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Abstract 
 

This research effort analyzes the fundamental dynamics governing a satellite with a 

gravity gradient boom and a tethered balloon. Satellites that use gravity gradient booms for 

passive attitude control are characterized by undamped pitch oscillations and no roll control.  The 

tethered balloon acts as a high drag device that accounts for the most drag on the satellite system.  

By attaching a drag device, the system resists rolling movements while also damping oscillations.  

This could potentially be a cost effective method for increasing satellite stabilization.  The goal of 

this research is to model the dynamics and determine the feasibility of a gravity gradient 

stabilized satellite with an attached balloon. A simulation written in Matlab analyzes the behavior 

of such a satellite.  The research is limited to circular orbits around a spherical Earth and includes 

only in-plane motion for each mass.  Stable ranges for certain tether characteristics are found for 

three different satellites. 
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A NUMERICAL ANALYSIS OF PASSIVE ATTITUDE STABILIZATION USING

A TETHERED BALLOON ON A GRAVITY GRADIENT SATELLITE

I. Introduction

This research effort analyzes the fundamental dynamics governing a gravity gradient satel-

lite with a tethered balloon in order to determine the feasibility of using such a satellite

concept for passive attitude stabilization. Satellites that use gravity gradient booms for pas-

sive attitude control are characterized by undamped oscillations and no roll control. The

tethered balloon acts as a high drag device that accounts for the most drag on the satel-

lite system, which causes the system to resist rolling movements while also damping pitch

angle oscillations. This could potentially be a cost effective method for increasing satellite

attitude stabilization. This chapter discusses the motivation behind the analysis of such a

system. Then, the objectives of this research are listed, the approach taken to achieve those

objectives is given, and the limitations of this research are discussed. The next chapter goes

on to provide a more adequate background for this satellite concept. Subsequent chapters

go on to derive the equations of motion for the satellite concept, detail the process taken in

simulating the satellite concept in orbit, and discuss the results of the simulation program.

1.1 Motivation

“Better, Faster, Cheaper” is a common catch-phrase in the United States Air Force

(USAF). In a service centered on maintaining technological superiority over its rivals, this

phrase has become the goal for many Air Force engineers. As expressed by the former

Secretary of the Air Force Dr. James G. Roche, “There isn’t enough money in the budget

to replace everything we want nor, in some respects, to replace everything we need. We

need to remain committed to investing wisely in our future” (7). The Air Force must be

cost efficient in order to sustain the best-equipped military with limited resources.

Furthermore, the actual budget for the Air Force space program is quite small com-

pared to the Department of Defense (DoD) budget and even the Air Force budget. The

DoD was given 380 billion dollars in 2004, from which 93.5 billion dollars was allocated to
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the Air Force (5:4). In the end, the Air Force allocated about 1.8 billion dollars to space-

related operations and 31.2 billion dollars for modernization, a portion of which includes

research, development, testing, evaluation, science, technology, and procurement of space

systems (5:4). This is a high estimate for space-related programs since the modernization

budget actually includes procurement of aircraft and armament. While space technology is

a high priority, Air Force space programs must be very efficient with the limited funds that

it receives.

Commitment to advanced technology is also a prime characteristic of the U.S. Air

Force. As stated by the USAF Future Concepts and Transformation Division:

“The purpose of Air Force innovation is to rapidly assess and implement new
ideas, concepts, and technologies to field the best capabilities to the warfighter
while also improving the associated doctrine, organization, training, materiel,
leadership and education, personnel, and facilities” (14:21).

The Air Force was founded on the exploitation of new technology and has continued to be

the best air force in the world because it researches, develops, and implements the newest

technology.

The current trend in satellites is a shift away from large, multi-payload satellites,

which carry larger production and launch costs, to micro and nanosatellites that cost much

less (8:806). “Recently, spacecraft have become more diverse, with the largest spacecraft

now complimented by new systems using a larger number of smaller spacecraft in low-Earth

orbit (LEO)” (16:853). Consequently, the smaller size and lower funds drive down the mass

and cost budgets of the satellite subsystems. To keep this transition effective, the satellite

and satellite subsystems must maintain a high degree of reliability. In addition, increased

subsystem reliability decreases the need for back-up systems which in turn decreases the

total satellite cost and weight.

Like all other subsystems, the attitude control subsystem must meet the requirements

determined by each mission payload with the stricter weight and cost constraints and at

the same degree of reliability. In fact, the attitude control subsystem carries additional

importance because it has the potential for decreasing satellite operation costs as well as

production costs. With greater pointing stability, a satellite can decrease the size of the

communications subsystem by decreasing the antenna size while maintaining a low level
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of bit error. With a totally passive attitude control system, reliability is increased and

operations costs are decreased. A passive system has the added benefits of having no

fuel requirements and very little power requirements. The benefits of the attitude control

subsystem are felt by all satellite subsystems, decreasing the overall cost and complexity of

the satellite.

Additionally, few low budget missions have the financial means to venture beyond

low-earth orbit, which includes up to 500 kilometers above the Earth. Gravity gradient

and aerodynamic drag torques are the dominating perturbations at these altitudes. Where

many satellites must counteract the effects of these perturbations, it would be advantageous

for an attitude control subsystem to use these torques to stabilize the satellite and meet

the mission pointing requirements. A satellite using passive aerostabilization decreases

complexity, weight, and cost by manipulating these perturbative forces rather than working

against them.

1.2 Satellite Concept

A satellite concept that could tie together all of these issues would be a low cost, high

performance, and high reliability passive attitude control system that would use gravity

gradient and drag torques in low-Earth orbit to produce a stable, nadir-looking attitude

within a limited time frame. The proposed answer to such an attitude subsystem would

look somewhat like Figure 1.1. Essentially starting from a gravity gradient satellite, a main

buss mass has an extended gravity gradient boom with a tip-mass at the end. Attached

to these two masses is a high drag device, potentially a rigidizable balloon. The balloon is

attached by two tethers that are connected to the tip-mass and main buss mass. Figure 1.1

shows the satellite concept in an initial configuration, but it is expected that the two tethers,

with high moduli of elasticity and elongation percentages, would extend the balloon mass

further behind the gravity gradient satellite. A deeper explanation of this configuration is

contained in Section 3.1.
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Figure 1.1 Engineering Model of Satellite Concept

1.3 Research Objectives

This research derives and tests a dynamical model for a gravity gradient satellite that

uses a tethered balloon for completely passive attitude stabilization. The purposes of this

study is to answer the following questions.

• What are the equations of motion for a gravity gradient satellite with a rigid balloon

attached by tethers?

• What attitude control system characteristics can be altered to manipulate the effec-

tiveness and efficiency of passive gravity gradient attitude control with aerostabiliza-

tion?

• What is the impact of certain satellite characteristics, namely modulus of elasticity

and damping coefficient, on the steady-state attitude of this satellite concept?

• Where are the regions of stability for these satellite characteristics?

The ideal result of this thesis would be to prove or disprove the feasibility of using

a gravity gradient boom and a tethered balloon to stabilize the attitude of a satellite by

developing and testing a dynamical model for the satellite system through a computer

program. A demonstration of a stable attitude would be shown through the damping of the

gravity gradient pitch angle over time. This is the basis for study of this attitude control
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concept, and subsequent design studies rely on whether pointing requirements can be met

at the base research level.

1.4 Research Approach

In order to accomplish the above established research objectives, this study takes the

following steps:

• Review all relevent information surrounding this satellite concept, including attitude

control techniques, tethers, aerostabilization, and any other pertinent articles.

• Derive the equations of motion for a gravity gradient satellite with a tethered, rigid

balloon.

• Create and validate a computer simulation that models a gravity gradient satellite

with aerostabilization.

• Characterize the impact of the moduli of elasticity and damping coefficients of the

tethers on the steady-state attitude of a satellite.

• Determine the regions of stability for these satellite characteristics.

1.5 Research Scope and Limitations

The research objectives allow a lot of room for simplifying the system as much as

possible in order to focus on the dynamics of this particular concept; however, this baseline

study must be thorough enough to determine whether this method of attitude stabilization

is even possible. The following assumptions limit the extent of knowledge gaining in this

research effort but also concentrate all efforts to produce a deeper understanding at the base

level of research.

• Assume two-body equations of motion for the satellite system center-of-mass (COM)

• Assume circular, low-Earth orbit about a spherical Earth

• Assume gravity, drag, tether-spring, and tether-damper are the only forces acting on

the tip-mass, main satellite bus, and tethered balloon
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• Assume motions of the tip-mass, main satellite bus, and tethered balloon are limited

to orbital plane

• Assume rigid masses and point masses for tip-mass, main satellite bus, and tethered

balloon

• Assume tethers are not compressed and are massless

• Assume rigid and massless gravity gradient boom

• Assume uniform density for atmosphere at a specific altitude

• Focus on motion of the satellite after deployment of the gravity gradient boom and

tethered balloon

These assumptions, while limiting the scope, greatly simplify the dynamics of the satellite

system. In most cases, the calculations and equations involved with this study are less

complicated and less prone to error. Further discussion of these assumptions and issues is

contained in Section 3.1.
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II. Literature Review

The Literature Review Chapter discusses pertinent background material that is helpful in

understanding this satellite concept. Since the satellite configuration that is being studied

involves a gravity gradient boom and tethered balloon used for passive attitude control, this

chapter will describe attitude control techniques, gravity gradient booms, tethers in space,

and rigidizable balloons. Past research involving passive aerostabilization is also discussed

since it is the closest configuration to the presently studied satellite concept. While this is

not a comprehensive description of all satellite topics necessary to understand this study,

this chapter attempts to explain and discuss all immediately relevant information.

2.1 Attitude Control Techniques

As defined by Space Mission Analysis and Design (SMAD), “the attitude determi-

nation and control subsystem measures and controls the spacecraft’s angular orientation

(pointing direction) or its orientation and linear velocity” (16:302). Pointing control is nec-

essary for several different reasons and at different performance specifications, depending

on the mission of the satellite. Reasons for attitude control include orbit insertion, initial

attitude stabilization, normal station-keeping, and special or contingency slew maneuvers

(16:356). These different operation modes can result in totally different attitude control sys-

tems. Additionally under the normal station-keeping mode, satellites are subject to cyclic

and secular disturbance torques. Cyclic disturbance torques happen on a periodic basis,

while secular torques have linear effects, like the effect of solar pressure. Furthermore, grav-

ity and drag dominate the disturbance torques at LEO while solar pressure and third-body

effects have greater influence in high-Earth orbit (HEO). Determining the primary distur-

bance torques in the mission orbit can help the design engineers focus on certain issues. All

of these requirements and issues drive the design of the attitude control system.

In designing the attitude control system, techniques come in the form of passive sys-

tems, spin-control systems, and three-axis control systems. A gravity gradient boom is

an example of a passive system and is described further in Section 2.2. Passive systems

normally have decreased accuracy but are less expensive and complex. “They consume no

power, require no hardware for sensing or actuation, and make no demands on software”

(6:282). The opposite is true of active systems. Thrusters and magnetic torquers are ex-
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amples of active systems. Active systems use either of two concepts, zero momentum or

momentum bias. In zero-momentum systems, “reaction wheels respond to disturbances on

the vehicle” (16:362). Momentum bias systems use one spinning wheel to give the satel-

lite gyroscopic stiffness and to control the attitude by torquing the wheel. Spin stabilized

satellites passively resist disturbance torques by using gyroscopic stability, but extra fuel is

needed to reorient the satellite once it begins spinning.

In determining which attitude control technique to use on a satellite, it is important

to look at the required performance specifications in terms of accuracy, range, jitter, drift,

and settling time (16:357). For example, “In many modern applications, the attitude errors

permitted are so small that only a fully automatic (fully ‘active’) control system can meet

mission specifications” (6:281). These requirements may come from different subsystems,

for example the payload or the communications subsystem. Accuracy and settling time are

the focus of this feasibility study since this satellite concept is for low-budget microsatellites.

More stringent requirements would be used for further studies and designs.

2.2 Gravity Gradient Satellites

The prime example for passive attitude control is gravity gradient stabilization. Grav-

ity gradient satellites exploit “some naturally occurring force field [Earth’s gravity field] to

provide the desired stabilizing torque” (6:282). Figure 2.1 shows an example of a satellite

that uses gravity gradient stabilization.

In designing a gravity gradient stabilized satellite, it is important for the moments

of inertia to follow certain criteria. First, the inertia ratio parameters k1 and k3 must be

defined. These ratios essentially make the design a function of two variables, rather than

three. In these equations, I1 is the moment of inertia aligned with the satellite’s velocity

vector, I2 is normal to the orbital plane, and I3 is aligned with the vertical axis.

k1 =
I2 − I3

I1
(2.1)

k3 =
I2 − I1

I3
(2.2)
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Figure 2.1 GEOS-II Spacecraft (6:328)

The regions of stability can then be seen in Figure 2.2. Hughes outlines the process of

determining the stability regions for gravity gradient satellites in chapter nine of his book,

Spacecraft Attitude Dynamics (6). From this figure, it can be seen that only certain satellite

configurations are acceptable for gravity gradient stabilization. The upper-right region is

populated by satellites that have the minor axis in the vertical direction, the intermediate

axis pointing in the velocity direction, and the major axis pointing normal to the orbit. The

lower region, called the DeBra-Delp region, shows the stability of rigid bodies whose minor

axis is normal to the orbit and whose major axis is tangent to the orbit (6:301). The satellite

concept under study uses the region of stability described in the upper right of Figure 2.2.

Although these stable regions exist in theory, there are two problems with gravity

gradient stabilization. First, gravity gradient torques decrease with increased altitude. This

makes it necessary to use inertia augmentation, which means increasing the moments of

inertia as much as possible. This can be done by placing long, slender rods along the

principal axes. Effectively, moments of inertia are increased, which also increases gravity
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Figure 2.2 Stability Regions for Gravity Gradient Satellites in Circular Orbit (6:297)

gradient restoring torques. This concept is depicted in Figure 2.3. The second issue in

dealing with gravity gradient stabilization is effective damping or energy dissipation. In

order to dampen out the librations, or oscillations in the pitch direction, the system must

dissipate energy. Options for energy dissipation include magnetic-hysteresis rods, spherical

tip dampers, and boom articulation. This damping is also a major focus for the satellite

concept currently under investigation.

2.3 Tethers in Space

The idea of tethers in space has been around since 1895 (3:7). Since then, the range

of applications for space tethers has been ever-growing. The usefulness of tethers span
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Figure 2.3 Inertia Augmentation (6:315)

all elements of the satellite system architecture. For example, tethered probes can take

samples and measurements at different altitudes without having to maneuver the main

satellite or spacecraft. This application is shown in Figure 2.4. This of course, eliminates

Figure 2.4 Tethered Probe Taking Measurements at Different Altitude than Orbiter (3:26)

the need for extra maneuvering fuel and expends the field of measurement around the main

satellite. Tethers also have the potential to collect electric power through a metallic tether

when travelling through the Earth’s geomagnetic field. The same essential concept makes

it possible to produce thrust when electricity is applied to a metallic tether. These two
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concepts are depicted in Figure 2.5. Tethers have even more applications involving only

Figure 2.5 Metallic Tethers Travelling through Earth’s Geomagnetic Field (a)Producing
Thrust (b)Producing Electric Power (3:25)

space transportation. Concepts like the space tether elevator, depicted in Figure 2.6, could

be used on the Earth as well as the Moon. Tether elevators attach to either the Earth or

Figure 2.6 Moon Based Space Elevator (3:30)

Moon and extend into normal orbital altitudes. Satellites using this system would travel up

the tether elevator and would be implanted into orbit using much less fuel than a typical

ground-launched rocket. Space escalators, shown in Figure 2.7, use similar concepts to space

elevators but applied to several tether satellites orbiting at different altitudes. Satellites

attach at one end of the first tether satellite, travel to the opposite end of the tether, release

from that tether satellite, attach to the next tether satellite orbiting further away, and

repeat that cycle until the desired orbit is reached. Since the tether systems effectively

transfer energy to the payload satellites to boost it to higher altitudes, the orbiting tethers

need some kind of station-keeping subsystem to keep each tether in its respective orbit.

There are many hindrances to the implementation of the above-mentioned tether sys-

tems. Strength, for one, is a material specification that limits the length of the tethers
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Figure 2.7 Space Escalator (3:29)

required for these applications. Specifically, there are no known materials that can be pro-

duced to the lengths necessary for a space elevator (at least 35,800 kilometers to reach

geostationary orbit). A tether at this length could not withstand its own weight and def-

initely not the added weight of a satellite. This mainly impacts tethers extending from

Earth since the gravitational force acting on a tether at even the lowest Earth orbits is large

enough to “exceed the break lengths on Earth by an order of magnitude” (3:36). Mass is

another issue as many applications of space tethers require lengths in units of kilometers.

This obstacle is crossed by using several braided fibers rather than one long strand. This

method increases strength with lower densities. Debris and micrometeorites pose another

threat since a great majority of which have diameters comparable to the diameters of space

tethers and travel at an average relative speed of 20 kilometers per second (3:39). While

the threat is small for tethers smaller than 100 kilometers, tether tapes have been proposed

for decreasing the dangerous impact from small space debris.

2.4 Rigidizable Balloons

Rigidizable, inflatable balloon systems have been studied since the beginning of the

National Aeronautics and Space Administration (NASA), but research is beginning to in-

crease due to modern missions which require even larger on-orbit systems, like large aperture

optical telescopes, solar arrays, and aerobrakes. Rigidizable balloons are intended to replace

typical, rigid mechanical structures. The balloons are flexible when not inflated but become

2-7



stiff when inflated to a predesigned size. Such systems are packaged uninflated prior to

launch in order to fit what would be systems larger than the launch vehicle envelope. After

the satellite is launched, the balloon inflates to a predesigned shape. Rigidizable balloons

derive their motivation, in large part, from the same motivation for this research concept -

smaller, more light-weight systems. The cost of a satellite increases as its size and weight

increases, but inflatable balloons can be fifty percent lighter and twenty-five percent smaller

than standard mechanical systems (12:2-3).

The system has high reliability because it does not require complex, mechanical com-

ponents or joints. Hinges and joints on mechanical systems have the potential to cold weld,

making it impossible to extend or deploy a part of the satellite. On the other hand, in-

flatable balloons continue to increase the pressure and force of deployment in the event the

system somehow resists deployment (12:2-3). The only failure point on an inflatable system

is the trigger to initiate inflation. Also, inflatable systems can be predesigned to inflate to

any shape and can even be packaged to almost any shape. This flexibility can be crucial

when trying to fit a satellite system within a launch vehicle’s envelope.

Slightly different from rigidizable, inflatable structures are inflatable structures, which

require additional gas in order to maintain the structural shape in the event of leaks. In-

flatable structures have been the focus of many research efforts even though rigidizable,

inflatable structures do not require extra gas and do not cause attitude torques in the case

of punctures in the balloon, possibly from micrometeorite impacts. Any leaks in inflatable

devices could cause unwanted thrust due to gas being expelled through small holes in the

structure. The inflatable structure also adds weight to the total satellite because of the need

of additional gas, gas tanks, and regulators.

An example of an inflatable, rigidizable structure is the L’Garde Inflatable Space Truss,

shown in Figure 2.8 . The truss is made out of a “composite material that are impregnated

with a water soluble resin” (12:2-11). The water in the composite evaporates in the vacuum

of space, stiffening the resin material and the structure as a whole. This system had a final

weight of 1.917 kilograms and a length of 60.1 inches, although the packing volume was only

1953 cubic inches (12:2-12).
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Figure 2.8 L’Garde Inflatable Space Truss (12:2-12)

As inflatable, rigidizable systems are still under development, there are several prob-

lems that this technology must overcome. First, it is difficult to test the effects of space on

these systems while they are on the ground. For example, the effect of gravity overshadows

the force seen in space. Since these forces cannot be properly tested, the guidance and

control of the satellite gains additional demands. Gravity also plagues the fabrication of

the material and the structure on the ground. The effects of gravity can make it difficult to

achieve uniformity in the material. This can cause a distortion in the shape when deployed

in space. These problems will hopefully be overcome by creating modeling and simulation

software that can more accurately test these structures and materials in a simulated space

environment without actually being in space.

2.5 Past Research

NASA was the first to develop and demonstrate a totally passive, aerodynamically

stabilized satellite for LEO in the years 1993 to 1997. The NASA Goddard Space Flight

Center developed the Passive Aerodynamically Stabilized Magnetically Damped Satellite

(PAMS), shown in Figure 2.9, as the first flight experiment to demonstrate the concept of

passive aerostabilization. This technology demonstration was required so that this concept

could be used on another satellite, the Gravity and Magnetic Earth Surveyor (GAMES),

which would be flown in order to evaluate the gravity field of the Earth to a high precision.

Passive aerostabilization was seen as a “low-cost, low-weight, long-lifetime option” for the

satellite (9:228).
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Figure 2.9 PAMS Schematic (9:228)

Figure 2.10 PAMS Results (15)

PAMS used a configuration similar to a shuttlecock where the center of mass was

placed forward, in the ram direction, of the center of pressure, while magnetic hysteresis

rods were used for rate damping. Aerodynamic stabilization was chosen as the primary sta-

bilization force because as Psiaki explains, “At altitudes below 400 km, aerodynamic drag

torque tends to overwhelm the gravity gradient torque for practical lightweight deployable

boom designs” (13:2). NASA’s method for attitude stabilization avoided the gravity gradi-

ent disturbance torque by designing the satellite to have equal moments of inertia. NASA

produced the computer program Free Molecular Aerodynamic Satellite Attitude Dynamic

Simulation (FREEMOL) to predict and numerically confirm the feasibility of aerostabi-
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lization. This simulation, shown in Figure 2.10, predicted worst-case angular rates of 0.1

degress per second in yaw and pitch and 0.05 degrees per second in roll.

Figure 2.11 NASA Flight of PAMS (15)

PAMS was flown on the Space Shuttle Mission STS-77 on May 1996. The PAMS

flight measurements met complications that prevented validation and calibration of the

FREEMOL software, but the cone angle estimates made by space shuttle astronauts during

rendezvous verified that the satellite’s attitude stabilized. During flight, the instrument

intended to measure the satellite’s attitude failed. Although this portion of the PAMS

flight was a failure, the overall project was still deemed a success. While PAMS is a similar

passively stabilized system developed and tested by NASA, the satellite concept currently

under study has never been tried.
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III. Dynamics

This section will outline and describe the fundamental mathematics that are used to model

the dynamics of this satellite concept. The chapter first describes the satellite concept and

the assumptions made. Next, the chapter defines the coordinate frames used in this study.

Finally, the two body equation of motion is derived as well as the equations of motion for

this satellite concept.

3.1 Basic Configuration and Assumptions

The distance from the gravity gradient tip-mass to the center of mass is defined as

’b’ whereas the distance to the main satellite bus from the tip-mass is defined as ’a’. The

length of each tether when taut is defined as ’l1’ for tether one and ’l2’ for tether two. The

moduli of elasticity for each tether are ’E1’ and ’E2’ and the damping coefficients are ’c1’

and ’c2’, respectively. Also, the tip-mass is defined as mass one or m1, the main bus mass

is m2, and the balloon mass is m3. Tether one connects the tip-mass to the balloon mass,

and tether two connects the main bus mass to the balloon mass. These characteristics are

depicted in Figure 3.1.

For this study, the tension in the tether is mathematically modelled as a simple spring

with a modulus of elasticity. Normally, moduli of elasticity are in units of force per cross-

sectional area of the spring. In this case, the moduli of elasticity have units of Newtons per

millimeter squared, but the cross-sectional area is assumed to be one millimeter squared.

In order to make use of this assumption, the moduli of elasticity are in units of Newtons

in the equations of motion and in the simulation program. However, this characteristic

is listed in force per unit area in the rest of this paper. The damping coefficient serves

as a model for energy dissipation in the spring. Energy dissipation is the factor that will

cause the librations, or oscillations due to gravity gradient torque, to dampen. The damping

coefficients are in units of Newton seconds per meter. This is regardless of the cross-sectional

area, and these are the units used for this characteristic in the dynamical model.

The center of mass of the satellite system is approximated as residing on the gravity

gradient boom at all times. The gravity gradient boom and tethers are assumed to have

zero mass. The tethered balloon is assumed to have a mass much smaller than the tip-mass.
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Figure 3.1 Depiction of Satellite Concept

By definition, the satellite’s main bus has much more mass than the tip-mass. Also, the

satellite is modelled as if the gravity gradient boom were already deployed. In addition,

the tethered balloon is assumed to have been deployed and inflated. The dynamics in this

model begin as if the satellite system depicted in Figure 3.1 is deployed as shown. As the

steady state stabilization is the focus of this baseline study, it is not necessary to consider

the system’s response in the transient mode. In fact, the mechanism for deploying both the

gravity gradient boom and tethered balloon is not within the scope of this study. These

assumptions are in addition to those listed in Section 1.5.

3.2 Coordinate Frames

To keep the model’s dynamics as simple as possible, this study uses a local coordinate

frame to the satellite as shown in Figure 3.1 of Section 3.1. This non-inertial coordinate

frame’s first two axes are in the orbital plane with the origin at the center of mass. The first

axis, δx, points in the direction of the satellite’s velocity vector, the second axis, δy, points
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in the radial direction away from Earth, and the third axis, δz, points out of the orbital

plane, completing the right-handed coordinate frame.

The radius, rc, of the satellite’s orbit is measured from the center of the Earth to

the center of mass of the satellite system. For this study, the altitude is assumed to be

200 kilometers above the Earth’s surface (REarth = 6375km). This project also assumes a

circular orbit about a spherical Earth.

Figure 3.2 Geocentric Equatorial Coordinate Frame

The Geocentric Equatorial (GCE) coordinate frame, which is inertially fixed in space

and shown in Figure 3.2, is used in this study in defining the two-body equations of motion

in Section 3.3. The first axis points toward the vernal equinox, the second axis is normal to

the first and in the equatorial plane, and the third axis is normal to the first two axes.

3.3 Two-Body Equation of Motion

The two-body equation of motion mathematically describes the motion of a satellite.

The two bodies in this system are the Earth, with mass mE , and a satellite, with mass

ms, both assumed to be point masses as shown in Figure 3.3. With respect to the inertial

frame, the positions of each mass are ~RE and ~Rs while the accelerations are ~̈RE and ~̈Rs.

The position of the satellite with respect to the Earth is defined as ~ro, where:

~ro = ~Rs − ~RE (3.1)
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Figure 3.3 Inertial Frame for Two-Body Equations of Motion

The acceleration of the satellite with respect to the Earth is determined by taking the second

derivative of the position vector, ~ro.

~̈ro = ~̈Rs − ~̈RE (3.2)

Using Newton’s second law, ~F = m~a, the only force acting on each mass is the gravitational

force due to the other mass and is defined by the following equations.

~Fs = − Gms mE∣∣∣~Rs − ~RE

∣∣∣
3

(
~Rs − ~RE

)
(3.3)

~FE = − G ms mE∣∣∣~RE − ~Rs

∣∣∣
3

(
~RE − ~Rs

)
(3.4)

In Equations 3.3 and 3.4, G is defined as the gravitation constant. After substituting the

above equations into Newton’s second law and replacing ~a with ~̈RE and ~̈Rs, Equations 3.5

and 3.6 are found.

ms
~̈Rs = − Gms mE∣∣∣~Rs − ~RE

∣∣∣
3

(
~Rs − ~RE

)
(3.5)

mE
~̈RE = − Gms mE∣∣∣~RE − ~Rs

∣∣∣
3

(
~RE − ~Rs

)
(3.6)
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Substituting these into Equation 3.2, the equation of motion is found to be:

~̈ro = −G (ms + mE)∣∣∣~Rs − ~RE

∣∣∣
3

(
~Rs − ~RE

)
(3.7)

To further simplify this equation of motion, the standard gravitational parameter is defined

in Equation 3.8.

µ = G (ms + mE) (3.8)

This quantity is known more accurately than the separate constituent values. For man-

made satellites, µ is approximated as µ = GmE since ms is much smaller than mE . After

substituting µ and Equation 3.1 into Equation 3.7, the final two-body equation of motion

is:

~̈ro = − µ

|~ro|3
~ro (3.9)

The Geocentric Equatorial (GCE) coordinate frame, described in Section 3.2, and the

two-body equation of motion are used to propagate the position and velocity vectors of the

satellite’s center of mass forward in time. The derivation of the two-body equation of motion

is fundamentally extracted from and further explained in Section 2.2 of Spacecraft Dynamics

by Dr. William Wiesel (17).

3.4 Satellite Concept Equations of Motion

The two-dimensional configuration for the studied satellite concept is the most straight-

forward case on which to determine the feasibility of this system. This case is based on a

circular orbit defined by two-body motion and includes the force of drag. The local coordi-

nate frame used in this case is described in Section 3.2. The process used to determine the

satellite concept’s equations of motion is known as Lagrange’s Equations of Motion. This

process was selected for its simplicity and ability to factor in additional non-conservative

forces without altering the basic equations of motion, which only include conservative forces.

The equations of motion for this satellite concept use the generalized coordinates δx,

δy, and θ. These are shown in Figure 3.1 of Section 3.1. There are only three coordinates

because there are three masses with a total of only three degrees of freedom. The number of
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degrees of freedom is found by subtracting the number of constraints from three times the

number of masses. From the assumptions, none of the masses move out of the orbital plane,

which equates to one constraint for each mass or three total constraints. The tip-mass and

main bus mass can move in the δx and δy directions, but both are fixed in distance from

the center of mass which accounts for two more constraints for the total system. Also, the

tip-mass and the main satellite bus are fixed rigidly to each other, accounting for the sixth

constraint. Therefore, three masses start with nine total degrees of freedom from which six

constraints are subtracted.

The balloon is essentially free to move in the δx and δy directions within the bounds

of the two tethers so δx and δy are a good choice for the first two generalized coordinates.

The tip-mass and main satellite bus are fixed to each other and pivot about the center of

mass. This is the same as a pendulum so an angle, θ, is a typical choice for the generalized

coordinate. The coordinate δy is measured from the center of mass of the satellite system

radially away from the center of the Earth. The coordinate δx is measured in the ram

direction emanating from the center of mass of the satellite system. The pitch angle, θ, is

measured from the δy axis to the gravity gradient boom, b. This angle is defined to be

positive as rotated clockwise about the negative δz axis.

To begin the process in determining the equations of motion for this system, the

position of each mass is determined in terms of the local reference, or body, frame. Since

all masses are in the orbital plane, the position and velocity components along the third

axis are zero. The three masses (tip-mass, main satellite bus, and balloon) have respective

position vectors:

~δr1 =

(
δx1

δy1

)
=

(
b sin(θ)

ro + b cos(θ)

)
(3.10)

~δr2 =

(
δx2

δy2

)
=

( −a sin(θ)

ro − a cos(θ)

)
(3.11)

~δr3 =




δx3

δy3


 =




δx

ro + δy


 (3.12)
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The velocity vectors in terms of the body frame are determined by taking the first derivative

of the position vectors with respect to the inertial GCE frame according to Equation 3.13.

˙~rB
I

= ˙~rB
B

+ (ω × ~rB) (3.13)

Using Equation 3.13 with ω equal to the angular velocity of the satellite system about the

Earth,

ω =
√

µ

r3
0

(3.14)

the velocities of each mass are calculated to be:

~̇δr1 =

(
b θ̇ cos(θ)− ω (r0 + b cos(θ))

−b θ̇ sin(θ) + ω b sin(θ)

)
(3.15)

~̇δr2 =

(−a θ̇ cos(θ)− ω (r0 − a cos(θ))

a θ̇ sin(θ)− ω a sin(θ)

)
(3.16)

~̇δr3 =

( ˙δx− ω (r0 + δy)

δ̇y + ω δx

)
(3.17)

Next, the kinetic energy of the system is found by summing the kinetic energies of each

mass.

T =
1
2

m1

(
~̇δr1 · ~̇δr

t

1

)
+

1
2

m2

(
~̇δr2 · ~̇δr

t

2

)
+

1
2

m3

(
~̇δr3 · ~̇δr

t

3

)
(3.18)

The potential energy of the system is found in similar fashion by summing the gravitational

potentials acting on each mass.

V = −µm1∣∣∣ ~δr1

∣∣∣
− µm2∣∣∣ ~δr2

∣∣∣
− µm3∣∣∣ ~δr3

∣∣∣
(3.19)

The denominators of the potential energies in Equation 3.19 are approximated using the

binomial theorem expanded to order three.

(α + β)n = αn + nαn−1 β +
1
2!

n (n− 1) αn−2 β2 + ... (3.20)
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By making the following substitutions:

α = ro
2 (3.21)

β =
(
2 ro y + y2 + x2

)
(3.22)

where x and y are place holders for the corresponding components of the positions of each

mass, δri, this approximation is carried out with the following results:

∣∣∣ ~δr1

∣∣∣
−1

= ro
−1 − 1

2 ro
3

(
2 ro b cos(θ) + b2 cos(θ)2 + b2 sin(θ)2

)
(3.23)

+
3

8 ro
5

(
2 ro b cos(θ) + b2 cos(θ)2 + b2 sin(θ)2

)2
+ ϑ (3)

∣∣∣ ~δr2

∣∣∣
−1

= ro
−1 − 1

2 ro
3

(
−2 ro a cos(θ) + a2 cos(θ)2 + a2 sin(θ)2

)
+ ... (3.24)

+
3

8 ro
5

(
−2 ro a cos(θ) + a2 cos(θ)2 + a2 sin(θ)2

)2
+ ϑ (3)

∣∣∣ ~δr3

∣∣∣
−1

= ro
−1 − 1

2 ro
3

(
2 ro δy + δy2 + δx2

)
+

3
8 ro

5

(
2 ro δy + δy2 + δx2

)2
+ ϑ (3) (3.25)

The results of Equations 3.18 and 3.19 are used to define the Lagrangian.

L = T − V (3.26)

The Lagrangian equations of motion are found for n-generalized coordinates by Equation

3.27.
d

dt

(
∂ L

∂ q̇k

)
−

(
∂ L

∂ qk

)
= Qk, k = 1, 2, ...n (3.27)

For the generalized coordinates, δx, δy, and θ, the Lagrangian equations of motion are as

follows:

m3 δ̈x− 2m3 ω δ̇y − 3m3 ω2 δy δx

ro
= Qδx (3.28)
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m3 δ̈y + 2 m3 ω ˙δx− 3m3 ω2 δy − 9m3 ω2 δy2

2 ro
− 3m3 ω2 δx2

2 ro
= Qδy (3.29)

m1

(
b2 θ̈ + 3ω2 b2 cos(θ) sin(θ) +

3ω2 b3

2 r0
sin(θ)

)
(3.30)

+ m2

(
a2 θ̈ + 3 ω2 a2 cos(θ) sin(θ)− 3 ω2 a3

2 r0
sin(θ)

)
= Qθ

The generalized forces, Qk, are found according to Equation 3.31 in order to complete

the equations of motion.

Qk =
N∑

i=1

~Fi · ∂ ~ri

∂ qk
=

N∑

i=1

~Fi · ∂ ~̇ri

∂ q̇k
(3.31)

The first force used in calculating the generalized forces is the force of drag acting on each

mass, i.

~Fdragi
= −1

2
CDi Ai ρ

∣∣∣~Vreli

∣∣∣
2

V̂reli (3.32)

A coefficient of drag, CD, of 2 is generally the value used in analyzing objects in space.

Also, the density, ρ, is approximated using an atmospheric model written by David Vallado

at the Air Force Academy, which is provided in Appendix F. The relative velocity, ~Vrel, is

found by rotating the local velocity vector to the inertial reference frame and subtracting

the velocity of the Earth’s atmosphere.

~Vreli = Rot (ω t) ~̇δri −
(
ωEarth ẑ ×Rot (ω t) ~δri

)
(3.33)

The rotation matrix between the inertial and body frame is:

Rot (φ) =




− sin(φ) cos(φ) 0

cos(φ) sin(φ) 0

0 0 −1


 (3.34)

The drag force is rotated back into the local body frame by multiplying it by the same

rotation matrix shown in Equation 3.34.

The next forces considered in this case are the tension forces of the tether, modelled

as spring forces, acting on each mass. These forces are modelled as a simple spring when
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the tether is taut and are defined as:

~Fspring1 =





~τ1 E1 (γ1 − 1) , γ1 > 1

0, γ1 ≤ 1
(3.35)

~Fspring2 =





~τ2 E2 (γ2 − 1) , γ2 > 1

0, γ2 ≤ 1
(3.36)

The unit vectors, ~τ , along which the forces act are:

~τ1 =
1
λ1




b sin(θ)− δx

b cos(θ)− δy


 (3.37)

~τ2 =
1
λ2



−a sin(θ)− δx

−a cos(θ)− δy


 (3.38)

As explained in Section 3.1, the moduli of elasticity have units of Newtons per millimeter

squared, but the cross-sectional area is assumed to be one millimeter squared. Based on

this assumption, the moduli of elasticity are in units of Newtons in the equations of motion

and in the computer simulation explained in Chapter IV. The quantities, γ, are defined by

the ratio of the tether length at a certain time to the initial tether length:

γ1 =
λ1

λ10
(3.39)

γ2 =
λ2

λ20
(3.40)

The tether lengths, λ, at a certain time are defined by:

λ1 =
√

(b sin(θ)− δx)2 + (b cos(θ)− δy)2 (3.41)

λ2 =
√

(−a sin(θ)− δx)2 + (−a cos(θ)− δy)2 (3.42)

These forces are developed from equations of motion derived in Dynamics of Space Tethers

by Beletsky and Levin for the motion of masses at the ends of a tether (3:42-48). These

equations are altered in order to be used as generalized forces using the chosen generalized
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coordinates. The motion of the end bodies is simplified by assuming a massless tether. This

focuses the equations of motion for the system solely on the end masses. Equations 3.35

and 3.36 are conditionals which make an allowance for a slack tether since compression is

not a factor when looking at the tether as a whole.

Similarly, a dissipative force must be added to account for energy losses due to each

tether. This energy dissipation allows the system to stabilize over time. This damping is

modelled as:

~Fdamper1 =





c1

(
~̇r3 − ~̇r1

)
, γ1 > 1

0, γ1 ≤ 1
(3.43)

~Fdamper2 =





c2

(
~̇r3 − ~̇r2

)
, γ2 > 1

0, γ2 ≤ 1
(3.44)

with damping coefficients for tether one and tether two, c1 and c2, respectively.

Considering the forces of drag and tether tensions described in Equations 3.32 through

3.44 and substituting into Equation 3.31, the generalized forces are:

Qδx = ~Fspring1 ·
∂ ~̇δr3

∂ ˙δx
+ ~Fspring2 ·

∂ ~̇δr3

∂ ˙δx
+ ~Fdamper1 ·

∂ ~̇δr3

∂ ˙δx
(3.45)

+ ~Fdamper2 ·
∂ ~̇δr3

∂ ˙δx
+ ~Fdrag3 ·

∂ ~̇δr3

∂ ˙δx

Qδy = ~Fspring1 ·
∂ ~̇δr3

∂ δ̇y
+ ~Fspring2 ·

∂ ~̇δr3

∂ δ̇y
+ ~Fdamper1 ·

∂ ~̇δr3

∂ δ̇y
(3.46)

+ ~Fdamper2 ·
∂ ~̇δr3

∂ δ̇y
+ ~Fdrag3 ·

∂ ~̇δr3

∂ δ̇y

Qθ = −~Fspring1 ·
∂ ~̇δr1

∂ θ̇
− ~Fspring2 ·

∂ ~̇δr2

∂ θ̇
+ ~Fdamper1 ·

∂ ~̇δr1

∂ θ̇
(3.47)

+ ~Fdamper2 ·
∂ ~̇δr2

∂ θ̇
+ ~Fdrag1 ·

∂ ~̇δr1

∂ θ̇
+ ~Fdrag2 ·

∂ ~̇δr2

∂ θ̇

The above generalized forces are then substituted into Equations 3.28 through 3.28 to get

the final equations of motion for the two-dimensional case of the satellite concept depicted
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in Figure 3.1.

m3 δ̈x− 2m3 ω δ̇y − 3m3 ω2 δy δx

ro
= −1

2
CD3 A3 ρ

∣∣∣~Vrel3

∣∣∣
2

Rot (ω t) V̂rel3δx
(3.48)

+





((b sin(θ))− δx) E1 (γ1 − 1) λ−1
1 , γ1 > 1

0, γ1 ≤ 1

+





((−a sin(θ))− δx) E2 (γ2 − 1) λ−1
2 , γ2 > 1

0, γ2 ≤ 1

+





c1

(
˙δx− ω δy − b θ̇ cos(θ) + ω b cos(θ)

)
, γ1 > 1

0, γ1 ≤ 1

+





c2

(
˙δx− ω δy + a θ̇ cos(θ)− ω a cos(θ)

)
, γ2 > 1

0, γ2 ≤ 1

m3 δ̈y + 2 m3 ω ˙δx− 3m3 ω2 δy − 9m3 ω2 δy2

2 ro
− 3m3 ω2 δx2

2 ro
= (3.49)

− 1
2

CD3 A3 ρ
∣∣∣~Vrel3

∣∣∣
2

Rot (ω t) V̂rel3δy

+





((b cos(θ))− δy) E1 (γ1 − 1) λ−1
1 , γ1 > 1

0, γ1 ≤ 1

+





((−a cos(θ))− δy) E2 (γ2 − 1) λ−1
2 , γ2 > 1

0, γ2 ≤ 1

+





c1

(
δ̇y + ω δx + b θ̇ sin(θ)− ω b sin(θ)

)
, γ1 > 1

0, γ1 ≤ 1

+





c2

(
δ̇y + ω δx− a θ̇ sin(θ) + ω a sin(θ)

)
, γ2 > 1

0, γ2 ≤ 1

m1

(
b2 θ̈ + 3 ω2 b2 cos(θ) sin(θ) +

3ω2 b3

2 r0
sin(θ)

)
(3.50)

+ m2

(
a2 θ̈ + 3ω2 a2 cos(θ) sin(θ)− 3ω2 a3

2 r0
sin(θ)

)
=

− 1
2

CD1 A1 ρ
∣∣∣~Vrel1

∣∣∣
2

Rot (ω t)
(
V̂rel1δx

b cos(θ)− V̂rel1δy
b sin(θ)

)
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− 1
2

CD2 A2 ρ
∣∣∣~Vrel2

∣∣∣
2

Rot (ω t)
(
V̂rel2δx

− a cos(θ) + V̂rel2δy
a sin(θ)

)

−





[(b sin(θ)− δx) b cos(θ)− (b cos(θ)− δy) b sin(θ)]E1 (γ1 − 1) λ−1
1 , γ1 > 1

0, γ1 ≤ 1

−





[(−a sin(θ)− δx) − a cos(θ) + (−a cos(θ)− δy) a sin(θ)]E2 (γ2 − 1) λ−1
2 , γ2 > 1

0, γ2 ≤ 1

+





c1

(
b cos(θ)

(
˙δx− ω δy − b θ̇ cos(θ) + ω b cos(θ)

))
, γ1 > 1

0, γ1 ≤ 1

+





c1

(
−b sin(θ)

(
δ̇y + ω δx + b θ̇ sin(θ)− ω b sin(θ)

))
, γ1 > 1

0, γ1 ≤ 1

+





c2

(
−a cos(θ)

(
˙δx− ω δy − b θ̇ cos(θ) + ω b cos(θ)

))
, γ2 > 1

0, γ2 ≤ 1

+





c2

(
a sin(θ)

(
δ̇y + ω δx + b θ̇ sin(θ)− ω b sin(θ)

))
, γ2 > 1

0, γ2 ≤ 1

These equations of motion are used in a fourth-order Runge-Kutta numerical inte-

grator which propagates the system parameters, δx, δy, and θ forward in time. These

equations of motion are solved for the accelerations before being used in the numerical

integrator, which is described further in Section 4.3.
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IV. Methodology

The program used to simulate the attitude of this satellite concept is described in this sec-

tion. While defining the equations of motion is paramount to creating a simulation, writing

this program has been the pith of this study. Contained in this chapter is a description

of the simulation program in terms of the satellite values tested. A general program algo-

rithm is provided that describes the simulation at the conceptual level. The chapter also

describes the approach taken to run the simulations whose results are found in Chapter V

and discusses the method of program validation. The actual code of the program is provided

in Appendices A through H. The program code has been separated into each subprogram

and is generally listed in the order in which it is called. Contained within each program

code in the appendices is an algorithm as well as a list of variables, constants, and coupled

programs.

4.1 Satellite Characteristics

The characteristics of the satellites used in this simulation represent modest estima-

tions of microsatellites with a gravity gradient boom. Since no satellite similar to that

depicted in Figure 3.1 exists, each variable either was defined by comparison to similar

satellite components or by determining a range of values through iterative simulation. The

satellite specifications used in this study are listed in Table 4.1.

The listed units are the same units used within the simulation program with the

exception of the moduli of elasticity. As stated in the assumptions, the listed moduli of

elasticity are first multiplied by the assumed cross-sectional area of the tethers, which is one

millimeter squared, before being used in the simulation. Also, the listed moduli of elasticity

and damping coefficients are nominal values for each satellite. These were found by iteration

of the simulation, which is described further in Chapter V. For these characteristics, many

values are possible within a range dependent on stability and performance specifications.

This is also discussed in Chapter V.

The first satellite, Satellite I or SatI, to be modelled represents a very general case.

The values for this satellite are a compromise between reality and simplicity. For example,

these general values make the calculations for the position of the center of mass (COM) and
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Table 4.1 Satellite Specifications
Variable Symbol Satellite I Satellite II DumbSat Units
Tip-Mass mone 10 3 50 kg

Main Bus Mass mtwo 100 70 50 kg
Balloon Mass mthree 1 0.5 1 kg

Tip-Mass Frontal Area areaone 0.1 0.0231 0.2 m2

Main Bus Frontal Area areatwo 0.5 0.2275 0.2 m2

Balloon Frontal Area areathree 5 2 2 m2

Boom Length a + b 6 5 5 m
Tip to COM Distance b 5.5 4.7945 2.5 m
Bus to COM Distance a 0.5 0.2055 2.5 m

T1 Taut Length lonenote 6 5 5 m
T2 Taut Length ltwonot 6 5 5 m

T1 Modulus of Elasticity Eone 0.002065 0.0003 0.00317 N/mm2

T2 Modulus of Elasticity Etwo 0.0202 0.006 0.00317 N/mm2

T1 Damping Coefficient cone 0.0007 0.0007 0.0016 Ns/m
T2 Damping Coefficient ctwo 0.0007 0.0007 0.0016 Ns/m

inertia matrix easier. Although the values are realistic, they do not represent a microsatellite

as well as the second satellite. The main criteria for the first satellite is that it be a stable

gravity gradient satellite. The criteria for stability is to have the principle moments of

inertia be such that the major axis (C) points normal to the orbit, the intermediate axis

(B) points in the velocity direction, and the minor axis (A) points in the radial direction.

This stability criteria is explained further in Section 2.2 and Section 4.4. The equations and

values for the moments of inertia are outlined in Section 4.4.

Satellite II, or SatII, uses more realistic values to increase the validity of the results.

For example, the mass of the main satellite bus was taken from a range of values given by

Surrey Satellite Technology Ltd. Their information was used because their flight-proven

systems are designed with the microsatellite concept in mind (4). In addition, the speci-

fications for the gravity gradient boom were defined based on information provided on an

actual boom created by Northrop-Grumman specifically for microsatellites (11).

The last satellite tested, DumbSat, is essentially a dumbbell configuration. This satel-

lite tests a completely different configuration from Satellite I, adding a breadth to the

simulation results. Also, the tether characteristics for a stable configuration are more intu-

itive. Since both ends of DumbSat are equal in mass, length, and frontal area, the attached

equal length tethers should have equal characteristics.
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4.2 Simulation Approach

In the simulations run, each satellite described in Table 4.1 is simulated with the initial

generalized coordinates in Table 4.2. The velocity terms for each generalized coordinate are

Table 4.2 Initial Generalized Coordinates
Generalized Coordinate Variable SatI SatII DumbSat Units

Balloon Position in x-direction δx -3.25 -2.6028 -3.75 meters
Balloon Position in y-direction δy 4.7631 4.1522 2.1651 meters

Pitch of Gravity Gradient Satellite θ π/6 π/6 π/6 radians

assumed to be zero in all cases. Each simulated satellite also begins at the same position

as described in Table 4.3 for the satellite center of mass. These initial coordinates simulate

Table 4.3 Initial Inertial Coordinates
Inertial Coordinate Value Units

Rx 6578.1 kilometers
Ry 0 kilometers
Rz 0 kilometers
Vx 0 kilometers/sec
Vy 7.7843 kilometers/sec
Vz 0 kilometers/sec

a circular, equatorial satellite. Although an equatorial orbit is not an assumption, a non-

equatorial orbit would provide the same results since a spherical Earth is assumed. In

addition, the number of steps and step size varied depending on what was the aim of the

simulation. For example, to get a general picture of a certain case, fewer steps allows the

simulation to run faster. On the other hand, more steps are required when measurements

are taken directly from the graph. The number of steps is also constrained by the numerical

integrator, discussed further in Section 4.3. A small number of steps decreases accuracy

because there are not enough data points to produce an accurate graph, but a large number

of steps results in a longer run time for the simulation. The number of steps and interval

for each presented simulation result is detailed in the corresponding section of the report or

graph.
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4.3 Program Algorithm

The algorithm of this program stems from a basic orbit prediction program self-written

for an undergraduate degree. The original program uses a method called Cowell to predict

and track the position of a satellite using the two-body equations of motion and certain

orbital perturbations, like drag and the effects of the Earth’s oblateness. That algorithm

has been adapted to use the equations of motion described in Section 3.4 and produce results

that are used to determine this satellite concept’s feasibility.

The numerical integrator is to simulate the motion of the satellite was coded in Matlab.

The equations of motion derived in Section 3.4 are rearranged slightly to solve for acceler-

ation and placed into a fourth order Runge-Kutta numerical integrator. The Runge-Kutta

numerical integrator is based on Equation 4.1 (2:414).

Xn+1 = Xn +
1
6

(k1 + 2 k2 + 2 k3 + k4) (4.1)

In this equation, the k’s are defined as:

k1 = h f (tn,Xn) (4.2)

k2 = h f

(
tn +

h

2
,Xn +

k1

2

)
(4.3)

k3 = h f

(
tn +

h

2
,Xn +

k2

2

)

k4 = h f (tn + h,Xn + k3)

where h is the step size and the function f (t,X) is equal to the derivative of the state

vector or Ẋ. This integrator is normally used for a state vector, X, with six variables -

three position vectors and three rate vectors. According to Bate, Mueller, and White, the

Runge-Kutta algorithm is stable and has a small truncation error (2:415).

To use this integrator, the simulation program begins by declaring all constants and

satellite variables as listed in Table 4.1. Second, the number of steps and the step size are

defined based on the period of the orbit and the number of orbits intended for inclusion.

Then, the program iterates through the number of steps in increments of the defined step
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size, calling subprograms that determine the future position of the center of mass as well as

the three masses of the satellite system. These subprograms calculate the state vector and

its derivative, which depends on the position of the balloon. If the balloon’s position causes

either tether to be taut, then that tether’s spring and damping forces are included in the

equations of motion. The state vector and its derivative are then used in Equation 4.1 to

calculate the future state vector. At each time step, the state vector is recorded so that at

the end of the program a plot can be made of the progress of δx, δy, and θ.

4.4 Program Validation

In order to determine whether the Matlab simulation program functions properly, a

case has been run which has known results. The case of a satellite with a gravity gradient

boom without the effects of drag has a known response to initial conditions so it was

used to test the computer simulation of this satellite concept. For this case, the forces

due to the tether have been neglected regardless of the position of the balloon mass. The

resulting oscillations in pitch angle, θ, have a predictable frequency that is dependent on

the principal moments of inertia. Using the specifications for each satellite listed in Table

4.1 and assuming a box-shaped main satellite bus and tip-mass, the principal moments of

inertia were calculated using the following equation:

Ixx = Iyy = Izz =
1
12

m (2 ·Area) (4.4)

where Area is the frontal area (1:702). The resulting principal moments of inertia for the

gravity gradient portions of each satellite are listed in Table 4.4. These values are based on

θ equal to zero. The frequency of oscillations in the pitch direction, np, has a predictable

Table 4.4 Principal Moments of Inertia
Principal Axis Satellite I Satellite II DumbSat Units
Minor Axis (B) 336 74.583 628 kg/m2

Intermediate Axis (A) 8.5 2.666 3.333 kg/m2

Major Axis (C) 336 74.583 628 kg/m2
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value as defined by Equation 4.5 and has units of radians per second (17:153).

np =

[

3 µ (B − A)

r3
com C

]1/2

(4.5)

The resulting predicted oscillation frequencies for the pitch angle are listed in Table 4.5.

Table 4.5 Frequencies of Pitch Angle Oscillation
Result Satellite I Satellite II DumbSat Units

Predicted 0.002024 0.002013 0.002044 rad/sec
Simulated 0.00190978 0.00190851 0.00190974 rad/sec

Percent Error 5.68 5.17 6.60 Percent

The simulated values were calculated by examining the output graph of pitch angle,

θ, versus time. The output for Satellite I is provided in Figure 4.1, and the simulated

oscillation frequency is listed in Table 4.5. The interval in this test is two periods with 400

steps. Sequential maximums are recorded to determine the period in terms of number of
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Figure 4.1 Simulated Results for Oscillation Frequency Validation for SatI
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steps, X. The oscillation frequency is then found by Equation 4.6.

np (simulated) =
2π

stepsize ·X (4.6)

The step size has units of seconds per step, and the resulting frequency from Equation 4.6

is in units of radians per second.

This test case was also run for Satellite II. The results are also in Tables 4.4 and 4.5,

while the output for Satellite II is provided in Figure 4.2. This test case was also run for
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Figure 4.2 Simulated Results for Oscillation Frequency Validation for SatII

DumbSat. The results are also in Tables 4.4 and 4.5. The output is provided in Figure 4.3.

It is important to note that all of these graphs show pitch angle oscillations varying

between π/6 and negative π/6, and these oscillations do not dampen. Hughes, mentioned

previously in Section 2.2, points out that certain satellite configurations produce oscillations

with marginal stability. One of these configurations is when k3 is approximately zero and
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Figure 4.3 Simulated Results for Oscillation Frequency Validation for DumbSat

when k1 is positive (6:302). This is equivalent to a slender rod with the long axis pointed in

the radial direction. As seen in Figure 3.1, these satellites closely resemble slender rods with

the long axis pointed in the radial direction. Furthermore, marginal stability is characterized

by an inability to dampen oscillations in a specified direction. As shown in the results of

this test case, none of the satellites have pitch angle graphs that decrease in amplitude,

demonstrating marginal stability.

These three tests demonstrate the accuracy of the system in that they have very low

percent error. Using the three satellites also shows consistency and a breadth in usability

for the simulation. The error in the simulated results stems from the assumptions made,

mainly that there is no motion outside of the orbital plane. Because of this assumption,

the dynamics and simulation do not account for any rolling or yawing motions. Also, these

satellites are quite similar and therefore have similar oscillation frequencies.
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V. Results

After the program was written and validated, the focus was placed on the main research

objective, determining whether passive attitude stabilization can be achieved by manipu-

lating aerodynamic and gravity gradient torques. Attention was first placed on determining

the effect of altering the modulus of elasticity for the two tethers in the satellite system.

Once a stable oscillation, or acceptable steady state pitch angle, was observed, the damping

coefficients were then altered to determine their impact on the system. It was also im-

portant to ascertain a legitimate damping of the pitch angle over a limited time, which is

the same as an acceptable settling time. These factors were then broken down into forces

applied on each mass for each generalized coordinate. Once the influence of these forces

was understood, the regions of stability for the moduli of elasticity and damping coefficients

were determined for the three satellites. This analysis was first performed on Satellite I

so the first set of results discussed are all for this satellite. The results of Satellite II and

DumbSat are provided following the analysis of Satellite I.

5.1 Modulus of Elasticity

The modulus of elasticity was the first variable to be inspected. This is the first

simulation to include the effects of the attached balloon mass and air drag acting on all

three masses. The damping coefficient was held constant at zero to isolate the effects of the

moduli of elasticity on the system. This simulation was iterated until an acceptable value

for the moduli of elasticity was found which produced a stable system. For these iterative

simulations, the inspected time interval was five periods with 1500 steps and a step size

of 17.7 seconds. After iterating through this case, an acceptable pitch angle output was

established for E1 equal to 0.002065 N/mm2 and E2 equal to 0.0202 N/mm2, shown in the

output graph of pitch angle,θ, in Figure 5.1.

The nominal moduli of elasticity found are very small values when compared to typical

materials used for space tethers. As shown in Table 5.1, typical moduli of elasticity have

values several orders of magnitude greater than the values found for the nominal case. This

is due in part on the application of typical space tethers. In general, space tethers are not

intended to be used as springs but are used more to hold components together at a certain

distance. In this satellite concept, the moduli of elasticity are intended to act as springs
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Figure 5.1 Nominal Moduli of Elasticity for SatI

Table 5.1 Moduli of Elasticity for Space Tethers (3:35)
Material Modulus of Elasticity (kN/mm2) Percent Elongation

Kevlar-49 130 2.5
Alloyed Aluminum 70 10

Stainless Steel 200 1.4

so that a damping coefficient can be added in a realistic manner. Table 5.2 lists moduli

of elasticity closer to those found in the simulation. Although there is no known flight

Table 5.2 Moduli of Elasticity for Possible Tethers (10)
Material Modulus of Elasticity (N/mm2) Percent Elongation

Silastic (R) 24005 Silicon Rubber 0.0588 950
Silastic (R) 24064 Silicon Rubber 0.1449 790
Silastic (R) 29051 Silicon Rubber 0.2373 436

experience of these materials, they are able to operate in temperatures well below freezing

(10).

The average of the pitch angles for the entire interval is 0.0412 radians or 2.36 degrees

and is within a very small margin of error from the ideal zero degree angle. This average

pitch angle correlates to a gravity gradient satellite with the main satellite in a nadir pointing
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configuration. This system is acceptable since it is marginally stable as the oscillations do

not extend beyond the initial amplitude. Also in Figure 5.1, the pitch angle is oscillating

between positive π/6, which is the initial pitch angle value, and negative π/6. This correlates

to the gravity gradient portion of the satellite oscillating like an undamped pendulum. This

is expected for a marginally stable gravity gradient satellite.

Figure 5.2 shows the motion of the balloon mass for the coordinate δx. The values of
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Figure 5.2 Nominal Moduli of Elasticity for SatI

δx continue to oscillate in this case because the pitch angle of the gravity gradient portion

of the satellite oscillates in an undamped manner. Figure 5.2 shows that, while the taut

length of the tether is set to six meters, the steady state length is about 25.25 meters. This

is as if the spring has reached its maximum length or is completely stretched. Table 5.1

also includes percent elongation for typical tether materials while Table 5.2 includes values

for possible materials. The main difference in values is again attributed to the difference in

applications. The tethers in this satellite concept are intended to act as springs, and springs

typically extend much further than the initial taut length.
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Figure 5.3 shows the motion of the balloon for δy over the simulated interval. The
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Figure 5.3 Nominal Moduli of Elasticity for SatI

balloon mass is oscillating in the vertical direction between approximately positive and

negative two meters. This is also due to the oscillation in the pitch angle.

An analysis was also conducted for unacceptable values for moduli of elasticity. When

the modulus of elasticity was well out of range, it was easy to see that the pitch angle spun

off into infinity. An example is shown in Figure 5.4 where E1 is equal to 0.0030975 N/mm2

and E2 is equal to 0.0202 N/mm2. The pitch angle values are limited to between negative

two pi and positive two pi in the figure so when the satellite tumbles past two pi radians

or 360 degrees, the graph shows pitch angles going from two pi directly back to zero. Since

Figure 5.4 shows the pitch angle continually doing this, the simulated satellite is actually

unstable and is tumbling end-over-end. This shows the volatility of the system since the

modulus of elasticity for tether one is only fifty percent more than its nominal value of

0.002065 N/mm2.
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Furthermore, it was necessary to observe the average of the pitch angles to ensure that

it was stabilizing to zero degree. This corresponds to the nadir pointing orientation. An

example of pitch angles oscillating about a non-zero value is shown in Figure 5.5 where E1

is equal to 0.0022715 N/mm2 and E2 is equal to 0.0202 N/mm2. The average in this case is

-1.5504 radians, which corresponds to oscillations about ninety degrees off the vertical axis.

If damping were added to this case, the satellite would be oriented with the main satellite

mass pointed in the ram direction and the tip mass trailing directly behind in the horizontal

direction. This may be desired in certain missions, but that is not the intended steady state

orientation of this simulation.

The impact of increasing and decreasing either moduli of elasticity is also important

to know when attempting to alter the system to meet certain criteria. As shown in Figure

5.5, increasing the first tether’s modulus of elasticity decreases the average pitch angle;

therefore, a decrease in the first tether’s modulus of elasticity increases the average pitch

angle. The opposite is true for the second tether’s modulus of elasticity. A change in the
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Figure 5.5 Modulus of Elasticity Out of Range by 10 Percent for SatI

second modulus of elasticity has a directly proportional impact on the average pitch angle.

For example, increasing the second modulus of elasticity increases the average pitch angle.

5.2 Damping Coefficient

The next variables introduced into the system are the damping coefficients for both

tethers, which simulate energy dissipation in the tethers due to real-world imperfections.

This first-level inspection of damping coefficient is important to establish that this satellite

characteristic is the major factor in damping down the oscillating pitch angle. The criteria

for this variable is that the average pitch angle stays close to zero degree. Second, the

settling time for the satellite system must be within three days, which equates to about fifty

orbits for a 200 kilometer altitude, circular orbit. The last criteria is that the forces exerted

on each mass and the value for the damping coefficient cannot be too excessive. In terms of

the former, large forces exerted on the masses could cause the tethers, tether connections,

or on-board instruments to fail. In terms of the latter, the damping coefficient should not
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be too large as this variable is only meant to model imperfections in the tether material.

In reality, energy would be lost through the tether in the form of radiation to space so an

overly large damping coefficient would be unrealistic.

During these simulations, the inspected time interval was fifty periods with 10,000

steps and a step size of 26.55 seconds. This case was run with the nominal moduli of

elasticity shown in Table 4.1 and depicted in Figures 5.1 through 5.3. Nominal values for

damping coefficients were found around 0.0007 Ns/m for both tethers for Satellite I. The

results, shown in Figure 5.6, had an average of 0.02 radians and settled to 0.0219 radians

after a little over two days.
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Figure 5.6 Stable Damping Coefficients for SatI

Figure 5.7 Forces Acting on Balloon Mass in X-Direction for SatI

The forces acting on each generalized coordinate are shown in Figures 5.7 through

5.12. The first graph shows the impacts of each force on δx. The maximum force felt by the

balloon in the x-direction is about two Newtons. The major forces acting on the balloon
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Figure 5.8 Zoomed In View of Forces Acting on Balloon Mass in X-Direction for SatI

mass in the x-direction are drag and the spring force of tether one. The drag force pulls

the balloon mass in the negative velocity direction while the spring force from tether one

pulls it in the positive velocity direction. The forces due to the second spring, both tether

damping effects, and two-body effects are very small so that region is expanded in Figure

5.8.

Figure 5.9 shows the impact of each force on the balloon mass in the δy coordinate.

The maximum force felt by the balloon in the y-direction is about 1.2 Newtons. The major

forces acting on the balloon mass in the y-direction are the damping forces of each tether.

This shows that the damping forces of each tether are the dominating mechanism in settling

the balloon mass to a certain value in the radial or vertical direction. Each force except the

first and second dampers are very small so the region close to zero Newtons is expanded

in Figure 5.10. These show that the damping force and spring force for each tether act in

opposition, as is the case for spring-damper systems.

Figure 5.11 shows the impacts of each force on θ. The maximum force felt by the

gravity gradient portion of the satellite system is 102 Newtons. The dominating forces for
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Figure 5.9 Forces Acting on Balloon Mass in Y-Direction for SatI

Figure 5.10 Zoomed In View of Forces Acting on Balloon Mass in Y-Direction for SatI
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Figure 5.11 Forces Acting on Tip-Mass and Main Bus Mass along θ for SatI

this coordinate are the spring forces of both tethers. Each force except the first and second

springs are very small so that region is expanded in Figure 5.12.

In analyzing the effect of damping coefficient on pitch angle stability, it can be seen

that there are upper and lower ranges. The lower range fails to meet the settling time

requirement of three days. This lower limit is dependent on other satellite characteristics,

like moduli of elasticity, the masses of each system part, and the gravity gradient boom

length. In the case of Satellite I and using the nominal moduli of elasticity in Table 4.1, the

lower limits for the damping coefficients are illustrated in Figure 5.13.

5-11



Figure 5.12 Zoomed In View of Forces Acting on Tip-Mass and Main Bus Mass along θ
for SatI

Figure 5.13 Stability Region for Damping Coefficients for SatI
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On the other hand, the upper range produces pitch angles which are above the de-

sired average. When the nominal damping coefficients are multiplied by ten, the result

is as shown in Figure 5.14. The steady state pitch angle for this case is 3.18 or about π
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Figure 5.14 Damping Coefficients Out of the Desired Range for SatI

radians. This is the same as the satellite being oriented upside-down at steady state, which

is possible in normal gravity gradient satellites as well. One problem with normal gravity

gradient satellites is that the upside-down orientation is actually an equilibrium point and

has been the result for some gravity gradient satellites. If the damping coefficient is not

modelled correctly, an upside-down orientation is a possibility. Just as normal gravity gra-

dient satellites require a mechanism to avoid the upside-down orientation, gravity gradient

satellites with a tethered balloon may require such a mechanism if the tether characteristics

are not modelled and designed correctly.

In addition, the forces applied to each mass were also increased. The maximum force

felt by the balloon in the x-direction is about 1.9 Newtons, as shown in Figure 5.15. The

dominating forces on the balloon in this direction is the spring force of the first tether and

the drag force, which remains the same from the nominal damping coefficients results. Each

force except the first spring force and drag are very small so that region is expanded in

Figure 5.16.
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Figure 5.15 Forces Acting on Balloon Mass in X-Direction For Damping Coefficient Out
of Range for SatI

Figure 5.17 shows the impacts of each force on δy. The maximum force felt by the

balloon in the y-direction is 1.1 Newtons. The major contributing forces in this direction are

the damping forces from each tether, as is the case from the nominal damping coefficients

results. Each force except the first and second dampers are very small so that region is

expanded in Figure 5.18.

Figure 5.19 shows the impacts of each force on the pitch angle. The maximum force

felt by the gravity gradient portion of the satellite system is 157 Newtons. Just like the

results for the nominal damping coefficients, the spring forces from both tethers are the

dominating forces. Each force, except the first and second springs, are very small so that

region is expanded in Figure 5.20. As shown, the satellite masses experience a maximum

force greater by a factor of fifty percent when the damping coefficients were increased by an

order of magnitude.

5-14



Figure 5.16 Zoomed in View of Forces Acting on Balloon Mass in X-Direction For Damp-
ing Coefficient Out of Range for SatI

Figure 5.17 Forces Acting on Balloon Mass in Y-Direction For Damping Coefficient Out
of Range for SatI
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Figure 5.18 Zoomed in View of Forces Acting on Balloon Mass in Y-Direction For Damp-
ing Coefficient Out of Range for SatI

Figure 5.19 Forces Acting on Tip-Mass and Main Bus Mass For Damping Coefficient Out
of Range for SatI
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Figure 5.20 Zoomed in View of Forces Acting on Tip-Mass and Main Bus Mass For Damp-
ing Coefficient Out of Range for SatI
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5.3 Stability Region

Although values for the moduli of elasticity and damping coefficients are provided in

Table 4.1, these are not the only values which work. The values used in the initial program

validation were chosen because they lie in the middle of the stability region. In fact, a range

of values had to be established through iterative simulation. By running the simulation for

many different tether characteristics, a region of stability was determined. The criteria for

this stability region is based on the steady state pitch angle and the settling time.

The criteria established for the modulus of elasticity uses a steady state pitch angle

of zero radian plus or minus one-twentieth radian. In this configuration, the main satellite

bus maintains a nadir pointing attitude. The region of stability for the modulus of elasticity

was first determined while holding constant the dampening coefficient at 0.0007 Ns/m for

Satellite I. After varying the modulus of elasticity for tether one between zero and 0.006

N/mm2 and the modulus of elasticity for tether two between zero and 0.06 N/mm2, the

stable range was found as depicted in Figure 5.21. This shows that stable values of moduli

Figure 5.21 Stability Region for Moduli of Elasticity for SatI

of elasticity exist in a region around the relationship of E2 equal to about ten times E1.
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This relationship may be explained by the fact that the distance ”b” is a little over ten times

the value of ”a”. Also, the main satellite bus mass is about ten times the tip-mass. This

relationship, however, needs more support before a correlation can be confirmed. However,

there are a few data points shown on Figure 5.21 that are not actually stable values for

moduli of elasticity. These are quite apparent because they are isolated data points that do

not follow the same relationship between the two moduli of elasticity.

5.4 Additional Satellite Results

This section provides the results of Satellite II and DumbSat. The specifications for

these satellites are provided in Table 4.1. These results serve to further validate the program

by demonstrating its flexibility. The following results give this research a breadth of inputs

upon which to make a more educated conclusion. Although Satellites I and II are very

similar, DumbSat demonstrates the effectiveness of this satellite concept and simulation for

a completely different satellite.

5.4.1 Satellite II Results. The results for Satellite II are summarized in this

section. Although similar analysis has been performed on this satellite’s simulation results,

that discussion is not necessary as it only serves to back up the conclusions drawn from

Satellite I. For Satellite II, the region of stability for the moduli of elasticity is shown in

Figure 5.22. The relationship in this case is that E2 is equal to about 20 times E1. Also,

the distance ”b” is about 24 times the value of ”a”, and the main satellite bus mass is about

23 times the tip-mass. Again, there is not enough data to show a definite correlation.

For Satellite II, the lower limit for stability of the damping coefficient is shown in

Figure 5.23. For the nominal values of moduli of elasticity and damping coefficients from

Table 4.1, the resultant graph of pitch angle is shown in Figure 5.24. For this graph and the

others in this section, the simulation uses 1500 steps and an interval of five periods. Figure

5.25 is the graph of the δx results, and Figure 5.26 is the graph of the δy results. The steady

state value of δx is about 28 meters in the wake of the satellite while oscillations in the δy

direction are less than a meter in both the positive and negative directions.

As shown in these graphs, the results for Satellite I and Satellite II are very similar.

The satellite system is stable, and the pitch angle dampens to approximately zero radian.
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Figure 5.22 Stability Region for Moduli of Elasticity for SatII

This additional case supports the conclusions drawn from Satellite I. These results demon-

strate and support the conclusion that this satellite concept is capable of stabilizing the

attitude to a relatively constant, nadir orientation within a limited time of three days.
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Figure 5.23 Stability Region for Damping Coefficients for SatII
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Figure 5.24 Nominal Tether Characteristics for SatII
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Figure 5.25 Nominal Tether Characteristics for SatII

0 50 100 150 200 250 300
−6

−4

−2

0

2

4

6

8

Time Steps (x17.7sec/step)

δ 
y 

(m
et

er
s)

δ y vs. Time Step for SatII

Figure 5.26 Nominal Tether Characteristics for SatII
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5.4.2 DumbSat Results. The results for DumbSat are summarized in this section.

Although similar analysis was performed on this satellite’s simulation results, that discussion

is not necessary as it only served to back up the conclusions drawn from Satellite I and

Satellite II. For DumbSat, the region of stability for the moduli of elasticity is shown in

Figure 5.27. This region of stability shows a one-to-one ratio for the moduli of elasticity.

Figure 5.27 Stability Region for Moduli of Elasticity for DumbSat

This makes sense since the satellite is a dumbbell configuration with equal end masses and

equal distances to each end mass from the center of mass. There are a few data points

shown on Figure 5.27 that are not actually stable values for moduli of elasticity because

they do not follow the same relationship between the two moduli of elasticity.

The region of stability for the damping coefficients is shown in Figure 5.28. For the

nominal values of moduli of elasticity and damping coefficients from Table 4.1, the resulting

graph of pitch angle is shown in Figure 5.29 For this output and the following graphs in this

section, the simulation uses 1500 steps and an interval of five periods. Figure 5.31 shows

the graph of δx results, and Figure 5.31 is the graph of δy results. The steady state value

of δx is about 28 meters in the wake of the satellite. Oscillations in the δy direction are less
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Figure 5.28 Stability Region for Damping Coefficients for DumbSat
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Figure 5.29 Nominal Tether Characteristics for DumbSat
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Figure 5.30 Nominal Tether Characteristics for DumbSat
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Figure 5.31 Nominal Tether Characteristics for DumbSat

than a meter in both the positive and negative directions.
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This final case supports the conclusions drawn from Satellites I and II. These results

demonstrate and support the conclusion that this satellite concept is capable of stabilizing

the attitude to a relatively constant, nadir orientation within a limited time of three days.

This case also shows that the satellite concept can be used for different gravity gradient

configurations, largely different from Satellites I and II. Although stability is achieved, this

configuration has a much larger settling time than those of Satellites I and II and so would

not normally be chosen over Satellites I or II.
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VI. Conclusions

The main objective of this research was to determine the feasibility of using a gravity

gradient boom and a tethered balloon for passive attitude stabilization. This was to be

accomplished by developing and testing a dynamical model for the satellite system through

a computer program that shows the progress of the pitch angle over time. A literature

review was conducted to understand the components involved in this satellite concept. The

literature review also discussed past research that used similar concepts for passive attitude

stabilization. Equations of motion were calculated for the three mass system that models

the satellite concept under study. The program was validated by calculating the frequency

of oscillations and comparing them to predicted values calculated from the moments of

inertia. The simulation program was run for three different satellites. A range of stability

for the moduli of elasticity and damping coefficients was found for each satellite.

The simulations run show that a gravity gradient satellite with a tethered balloon can

achieve attitude stabilization over time. While these are limited cases, this basic simulation

demonstrates the feasibility of using this satellite concept for aerostabilization. The gravity

gradient portion of the attitude control system provides basic stabilization, oscillating about

its equilibrium point. The tethered balloon dampens the motion by dissipating energy

through the tethers.

The system was limited to a circular orbit about a spherical Earth and subjected

to only drag and gravity perturbations. The simulation also assumed that motion was

restricted to the orbital plane. The simulation also focused on modelling only microsatellites.

Further study should include non-circular orbits and include more orbital perturbations,

like an oblate Earth. This would make it necessary to include motion outside of the orbital

plane and determine the satellite concept’s effectiveness in damping motion in the roll and

yaw directions. Other orbital factors could be analyzed to determine its impact on attitude

stability for the satellite concept. For example, the maximum altitude with effective amounts

of aerodynamic drag should be determined.

Once the simulation is updated to include out-of-plane motion, the model should be

run to determine the stable range for other satellite characteristics. The size of the tethered

balloon should also be varied to determine the minimum size that would create enough of a
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drag force. The relationship between mission lifetime and attitude settling time should be

analyzed to determine an optimum trade-off. The length of the tethers and gravity gradient

boom could also be analyzed to determine minimum values under different conditions. The

initial conditions should also be varied to determine if the satellite concept can dampen

out unwanted motion despite its initial orientation. Since there are so many variables to

include, a graphical user interface should be created that can make it easier to vary certain

quantities and provide graphical and numerical results for analysis.

Further research should also include analysis and inspection of possible materials for

the tethers and balloon. A mechanism for deployment of the gravity gradient boom and

tethered balloon would have to be designed. If all further research supports the feasibility

and effectiveness of this satellite concept for attitude control, a test flight would eventually

have to be conducted to verify the accuracy of the simulation.

6-2



Appendix A. Thesis.m

function Thesis;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% PROCEDURE Thesis

%%

%% This procedure uses a numerical integrator for orbital prediction of

%% a three body system.

%%

%% Author : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 27 Oct 2004

%%

%% Algorithm: 1. Initialize constants and variables

%% 2. Declare initial conditions and satellite characteristics

%% 3. Call RK4 and RK4forRandV which predicts generalized

%% coordinates, R for COM, and V for COM at next time step

%% 4. Increment time step and loop to step 3 for time interval

%% 5. Calculate generalized coordinates, R for COM, and V for

%% COM for any time left over

%% 6. Plot generalized coordinates

%%

%% Locals :

%% Derivtype - Defines which equations of motion to use

%% time - Time that is propagated forward in Julian time

%% nsteps - Number of steps to propagate over

%% leftover - Any amount of time not integrated over by initial loop

%% lamone - Length of tether one at (time)

%% lamtwo - Length of tether two at (time)

%% X - State vector for R and V

%% Y - State vector for generalized coordinates

%% steps - Defines number of steps to iterate over

%% period - Period of the orbit
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%% interval - Total time to iterate over

%% stepsize - Stepsize for iterations

%%

%% Constants :

%% Rad - Conversion for degrees to radians

%% Deg - Conversion for radians to degrees

%% TwoPI - Pi times two

%% MU - Constant

%% a - Distance from main satellite bus to COM (m)

%% b - Distance from tip-mass to COM (m)

%% lonenot - Taut length of top tether (m)

%% ltwonot - Taut length of bottom tether (m)

%% ri - Radius of circular orbit of system (km)

%% vi - Velocity of circular orbit of system (km/sec)

%% mone - Mass of tip-mass (kg)

%% mtwo - Mass of main satellite (kg)

%% mthree - Mass of main balloon (kg)

%% JDstart - Starting Julian date

%% JDstop - End Julian date

%%

%% Coupling :

%% Data - Provides global constants

%% JulianDay - Converts year, month, etc. into a Julian Date

%% RK4forRandV - Propagates R and V forward in time

%% RK4 - Propagates delx, dely, and theta forward in time

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Which Satellite?

question=1;

%% Open file with globals and declare them

Data(question) global Rad Deg MU TwoPI a b lonenot ltwonot ri vi
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JDstart JDstop mone mtwo mthree

%% Initialize Derivtype - 2 means the com is only subject to 2-body

%% motion

Derivtype=’ynnnnnnnn2’;

%% Initialize state vector Y (del x, del y, theta)

%% - Y is in terms of the local frame

theta=pi/6; delx=b*sin(theta)-lonenot*cos(theta-(pi/6));

dely=b*cos(theta)+lonenot*sin(theta-(pi/6)); delxdot=0; delydot=0;

thetadot=0;

Y = [delx; dely; theta; delxdot; delydot; thetadot];

%% Initialize state vector X (satellite COM)

%% - X is in terms of the inertial GCE frame

%% - Initialize input COE’s and convert units %%

tempa=ri; tempe=0.00; tempi=0; tempomega=0; tempargp=0; tempnu=0;

tempu=0; templ=0; tempcappi=0;

%% Convert units %%

tempi=tempi*Rad; tempomega=tempomega*Rad; tempargp=tempargp*Rad;

tempnu=tempnu*Rad; tempu=tempu*Rad; templ=templ*Rad;

tempcappi=tempcappi*Rad;

%% Calculate semi-latus rectum %%

tempp=tempa*(1-tempe^2);

%% Calculate R and V %%

[R,V] =

RandV(tempp,tempe,tempi,tempomega,tempargp,tempnu,tempu,templ,tempcappi);

X = [R(1:3);V(1:3)];
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%% Define time increment variable and number of steps

steps=400; period=TwoPI*sqrt(ri^3/MU); interval=2*period;

JDstop=JDstart+interval/86400; stepsize=interval/steps;

time=JDstart; nsteps=(JDstop-JDstart)/(stepsize/86400);

%% Initialize E1, E2, c1, and c2

factor=1;

if question==1

%% Specs for Sat I

Eone=0.002065; %% Modulus of Elasticity for tether one (N/mm^2)

Etwo=0.0202; %% Modulus of Elasticity for tether two (N/mm^2)

cone=0.0007*factor; %% Damping coefficient for tether one (N*s/m)

ctwo=0.0007*factor; %% Damping coefficient for tether two (N*s/m)

elseif question==2

%% Specs for Sat II

Eone=0.0003; %% Modulus of Elasticity for tether one (N/mm^2)

Etwo=0.006; %% Modulus of Elasticity for tether two (N/mm^2)

cone=0.0007; %% Damping coefficient for tether one (N*s/m)

ctwo=0.0007; %% Damping coefficient for tether two (N*s/m)

elseif question==3

%% Specs for DumbSat

Eone=0.00317; %% Modulus of Elasticity for tether one (N/mm^2)

Etwo=0.00317; %% Modulus of Elasticity for tether two (N/mm^2)

cone=0.0016; %% Damping coefficient for tether one (N*s/m)

ctwo=0.0016; %% Damping coefficient for tether two (N*s/m)

end

%% Propagate X and Y forward

for i=1:nsteps

%% Save Y data to be plotted in the body frame
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xdata(i)=Y(1);

ydata(i)=Y(2);

thetadata(i)=Y(3);

%% Calculate Y at (time) by calling RK4

[Y, Rot] = RK4 (time, stepsize, Derivtype, Y, X, Eone, Etwo,

cone, ctwo);

%% Calculate X at (time) by calling RK4forRandV

X = RK4forRandV ( time, stepsize, Derivtype, X, Y, Rot );

%% Increment time

time=time+(stepsize/86400);

end aver = sum(thetadata(1:fix(nsteps)))/fix(nsteps);

maxt=max(thetadata(fix(nsteps)-100:fix(nsteps)));

mint=min(thetadata(fix(nsteps)-100:fix(nsteps)));

%% Propagate after any time left over %%

leftover=(JDstop-time)*86400;

[Y, Rot] = RK4 (time, leftover, Derivtype, Y, X, Eone, Etwo,

cone, ctwo);

X = RK4forRandV ( time, leftover, Derivtype, X, Y, Rot);

%% Plot generalized coordinates in local coordinate frame

subplot(2,2,1:2)

plot(thetadata)

xlabel(’Time Steps’)

ylabel(’\theta (radians)’)

if question==1

title(’\theta vs. Time Steps for Sat I’)

elseif question==2
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title(’\theta vs. Time Steps for Sat II’)

elseif question==3

title(’\theta vs. Time Steps for DumbSat’)

end

subplot(2,2,3)

plot(xdata)

xlabel(’Time Steps’)

ylabel(’\delta x (meters)’)

if question==1

title(’\delta x vs. Time Steps for Sat I’)

elseif question==2

title(’\delta x vs. Time Steps for Sat II’)

elseif question==3

title(’\delta x vs. Time Steps for DumbSat’)

end

subplot(2,2,4)

plot(ydata)

xlabel(’Time Steps’)

ylabel(’\delta y (meters)’)

if question==1

title(’\delta y vs. Time Steps for Sat I’)

elseif question==2

title(’\delta y vs. Time Steps for Sat II’)

elseif question==3

title(’\delta y vs. Time Steps for DumbSat’)

end

A-6



Appendix B. RK4.m

function [Y2, Rot] = RK4 (time, stepsize, Derivtype, Y, X, Eone,

Etwo, cone, ctwo);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function RK4

%%

%% This is a fourth order Runge-Kutta integrator for a 6 dimension

%% First Order differential equation. It is for a satellite

%% equation of motion. The user must provide an external function

%% containing the system Equations of Motion.

%% The integration is done for one time step only.

%%

%% This program was altered in order to be used for this thesis.

%% Algorithm : Evaluate each term depending on the derivtype

%% Find the final answer

%%

%% Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 5 Jun 1991

%% In Ada : Dr Ron Lisowski USAFA/DFAS 719-472-4110 12 Jan 1996

%% In MatLab : Dr Ron Lisowski USAFA/DFAS 719-333-4109 16 Jan 2002

%% Altered by : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 8 Nov 2004

%%

%% Inputs :

%% time - Initial Time Julian Date days since 4713 B.C.

%% stepsize - Step size sec

%% DerivType - String containing YN for tension forces "YYNYNYNY2"

%% Y - State vector of delx, dely, theta at initial time m, m/sec

%% X - State vector of R and V at initial time km, km/sec

%%

%% Outputs :
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%% Y - State vector of delx, dely, theta at new time m, m/sec

%%

%% Locals :

%% YDot - Derivative of State Vector

%% K1,K2,K3 - Storage for values of state vector at different times

%% (The standard Runge-Kutta K constants)

%% TEMP - Storage for state vector

%% TempDate - Temporary date storage half way between dt days since

%% 4713 B.C.

%%

%% Constants :

%% TwoPI - 2 times pi

%% w - Angular rate of the satellite’s com

%% JDstart - The initial time for integration

%%

%% Coupling :

%% TetherDeriv function for Derivatives of E.O.M.

%%

%% References :

%% Mathews, "Numerical Methods" pg. 423-427

%% BMW pg. 414-415

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Declare constants

global TwoPI MU JDstart a b lonenot ltwonot mone mtwo mthree

%%calculate angular rate of orbit (rad/sec)

w=sqrt(MU/mag(X(1:3))^3);

%% Calculate rotation angle and perform revolution check
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rotang=w*(time-JDstart)*86400; rotang = revcheck(rotang, TwoPI);

%% Calculate rotation matrix

Rot=[-sin(rotang) cos(rotang) 0;cos(rotang) sin(rotang) 0;0 0 -1];

%% Redefine the tether lengths according to Y at (time)

lamone = sqrt((b*sin(Y(3)) - Y(1))^2 + (b*cos(Y(3)) - Y(2))^2);

lamtwo = sqrt((a*sin(Y(3)) + Y(1))^2 + (a*cos(Y(3)) + Y(2))^2);

%% Determine whether to add the tension forces of each tether

%% - The tether length must be greater than its initial length to

%% include tension forces on each mass to which it is connected.

if lamone/lonenot > 1.000

Derivtype(3)=’y’;

else

Derivtype(3)=’n’;

end if lamtwo/ltwonot > 1.000

Derivtype(4)=’y’;

else

Derivtype(4)=’n’;

end

%% Local VARIABLES

%%%%%%%%%%%%%%%% Evaluate 1st Taylor Series Term %%%%%%%%%%%%%%%%

[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag,Tether1springx,

Tether1damperx,Tether1springy,Tether1dampery,Tether1springtheta,

Tether1dampertheta,Tether2springx,Tether2damperx,Tether2springy,

Tether2dampery,Tether2springtheta,Tether2dampertheta] =

TetherDeriv(Derivtype, Y, lamone, lamtwo, X, Rot, Eone, Etwo,

cone, ctwo);
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%%%%%%%%%%%%%%%% Update Julian Date for a half Dt %%%%%%%%%%%%%%-

TempDate = time + stepsize * 0.5 / 86400.0;

%%%%%%%%%%%%%%%% Evaluate 2nd Taylor Series Term %%%%%%%%%%%%%%%%

K1Y = stepsize * YDot;

K1(2) = stepsize * ax2body;

K1(3) = stepsize * ay2body;

K1(4) = stepsize * at2body;

K1(5) = stepsize * axdrag;

K1(6) = stepsize * aydrag;

K1(7) = stepsize * atdrag;

K1(8) = stepsize * Tether1springx;

K1(9) = stepsize * Tether1damperx;

K1(10) = stepsize * Tether1springy;

K1(11) = stepsize * Tether1dampery;

K1(12) = stepsize * Tether1springtheta;

K1(13) = stepsize * Tether1dampertheta;

K1(14) = stepsize * Tether2springx;

K1(15) = stepsize * Tether2damperx;

K1(16) = stepsize * Tether2springy;

K1(17) = stepsize * Tether2dampery;

K1(18) = stepsize * Tether2springtheta;

K1(19) = stepsize * Tether2dampertheta;

Temp = Y + 0.5 * K1Y;

%% Redefine the tether lengths according to Y at (time)

lamone = sqrt((b*sin(Temp(3)) - Temp(1))^2 + (b*cos(Temp(3))...

- Temp(2))^2); lamtwo = sqrt((a*sin(Temp(3)) + Temp(1))^2 +...

(a*cos(Temp(3)) + Temp(2))^2);

[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag,Tether1springx,

Tether1damperx,Tether1springy,Tether1dampery,Tether1springtheta,

Tether1dampertheta,Tether2springx,Tether2damperx,Tether2springy,
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Tether2dampery,Tether2springtheta,Tether2dampertheta] =

TetherDeriv(Derivtype, Temp, lamone, lamtwo, X, Rot, Eone, Etwo,

cone, ctwo);

%%%%%%%%%%%%%%%% Evaluate 3rd Taylor Series Term %%%%%%%%%%%%%%%%

K2Y = stepsize * YDot;

K2(2) = stepsize * ax2body;

K2(3) = stepsize * ay2body;

K2(4) = stepsize * at2body;

K2(5) = stepsize * axdrag;

K2(6) = stepsize * aydrag;

K2(7) = stepsize * atdrag;

K2(8) = stepsize * Tether1springx;

K2(9) = stepsize * Tether1damperx;

K2(10) = stepsize * Tether1springy;

K2(11) = stepsize * Tether1dampery;

K2(12) = stepsize * Tether1springtheta;

K2(13) = stepsize * Tether1dampertheta;

K2(14) = stepsize * Tether2springx;

K2(15) = stepsize * Tether2damperx;

K2(16) = stepsize * Tether2springy;

K2(17) = stepsize * Tether2dampery;

K2(18) = stepsize * Tether2springtheta;

K2(19) = stepsize * Tether2dampertheta;

Temp = Y + 0.5 * K2Y;

%% Redefine the tether lengths according to Y at (time)

lamone = sqrt((b*sin(Temp(3)) - Temp(1))^2 + (b*cos(Temp(3))...

- Temp(2))^2); lamtwo = sqrt((a*sin(Temp(3)) + Temp(1))^2 +...

(a*cos(Temp(3)) + Temp(2))^2);

[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag,Tether1springx,

Tether1damperx,Tether1springy,Tether1dampery,Tether1springtheta,
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Tether1dampertheta,Tether2springx,Tether2damperx,Tether2springy,

Tether2dampery,Tether2springtheta,Tether2dampertheta] =

TetherDeriv(Derivtype, Temp, lamone, lamtwo, X, Rot, Eone, Etwo,

cone, ctwo);

%%%%%%%%%%%%%%%% Evaluate 4th Taylor Series Term %%%%%%%%%%%%%%%%

K3Y = stepsize * YDot;

K3(2) = stepsize * ax2body;

K3(3) = stepsize * ay2body;

K3(4) = stepsize * at2body;

K3(5) = stepsize * axdrag;

K3(6) = stepsize * aydrag;

K3(7) = stepsize * atdrag;

K3(8) = stepsize * Tether1springx;

K3(9) = stepsize * Tether1damperx;

K3(10) = stepsize * Tether1springy;

K3(11) = stepsize * Tether1dampery;

K3(12) = stepsize * Tether1springtheta;

K3(13) = stepsize * Tether1dampertheta;

K3(14) = stepsize * Tether2springx;

K3(15) = stepsize * Tether2damperx;

K3(16) = stepsize * Tether2springy;

K3(17) = stepsize * Tether2dampery;

K3(18) = stepsize * Tether2springtheta;

K3(19) = stepsize * Tether2dampertheta;

Temp = Y + K3Y;

%%%%%%%%%%%%%%%% Update Julian Date for a full Dt %%%%%%%%%%%%%%-

TempDate = time + stepsize / 86400.0;

%% Redefine the tether lengths according to Y at (time)

lamone = sqrt((b*sin(Temp(3)) - Temp(1))^2 + (b*cos(Temp(3))...
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- Temp(2))^2); lamtwo = sqrt((a*sin(Temp(3)) + Temp(1))^2 +...

(a*cos(Temp(3)) + Temp(2))^2);

[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag,Tether1springx,

Tether1damperx,Tether1springy,Tether1dampery,Tether1springtheta,

Tether1dampertheta,Tether2springx,Tether2damperx,Tether2springy,

Tether2dampery,Tether2springtheta,Tether2dampertheta] =

TetherDeriv(Derivtype, Temp, lamone, lamtwo, X, Rot, Eone, Etwo,

cone, ctwo);

%%%%%%%%%%- Update the State vector, perform integration %%%%%%-

K4Y = stepsize * YDot;

K4(2) = stepsize * ax2body;

K4(3) = stepsize * ay2body;

K4(4) = stepsize * at2body;

K4(5) = stepsize * axdrag;

K4(6) = stepsize * aydrag;

K4(7) = stepsize * atdrag;

K4(8) = stepsize * Tether1springx;

K4(9) = stepsize * Tether1springy;

K4(10) = stepsize * Tether1springtheta;

K4(11) = stepsize * Tether1damperx;

K4(12) = stepsize * Tether1dampery;

K4(13) = stepsize * Tether1dampertheta;

K4(14) = stepsize * Tether2springx;

K4(15) = stepsize * Tether2springy;

K4(16) = stepsize * Tether2springtheta;

K4(17) = stepsize * Tether2damperx;

K4(18) = stepsize * Tether2dampery;

K4(19) = stepsize * Tether2dampertheta;

Y = Y + ( K1Y + 2.0 * ( K2Y + K3Y ) + K4Y)/ 6.0 ;
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for i=2:19

acceleration(i)=( K1(i) + 2.0 * ( K2(i) + K3(i) ) + K4(i)) / 6.0;

end

%% Perform revolution check on theta

% Y(3) = revcheck (Y(3), TwoPI);

%% For some reason, revcheck doesn’t work.

%% - something to do with theta being close to zero

Y(3) = Y(3) - TwoPI * fix(Y(3) / TwoPI);

%% Define output Y vector

Y2 = Y;
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Appendix C. TetherDeriv.m

function

[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag,Tether1springx,

Tether1damperx,Tether1springy,Tether1dampery,Tether1springtheta,

Tether1dampertheta,Tether2springx,Tether2damperx,Tether2springy,

Tether2dampery,Tether2springtheta,Tether2dampertheta]

= TetherDeriv(Derivtype, Y, lamone, lamtwo, X, Rot, Eone, Etwo,

cone, ctwo);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% PROCEDURE TetherDeriv

%%

%% This procedure calculates Ydot.

%%

%% Algorithm: 1. Call global variables

%% 2. Call Deriv to calculate generalized

%% coordinates without generalized forces

%% 3. Calculate tether tension forces and dissipative

%% forces

%% 4. Sum accelerations to get final generalized coordinates

%%

%% Author : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 27 Oct 2004

%%

%% Inputs :

%% Derivtype - Defines which equation of motion to use

%% Y - State vector of delx, dely, theta at initial time m, m/sec

%% lamone - Length of tether one at (time)

%% lamtwo - Length of tether two at (time)

%% X - State vector of R and V km, km/sec

%% Rot - Rotation matrix

%%
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%% Outputs :

%% YDot - Derivative of Y state vector

%%

%% Locals :

%% R - Position vector km

%% V - Velocity vector km/s

%% ax - Acceleration in x direction from perturbations

%% ay - Acceleration in x direction from perturbations

%% az - Acceleration in x direction from perturbations

%% r - Magnitude of R

%% temp(2) - Variables that increase coding efficiency

%% RSun - Vector to sun from the satellite

%% RtAsc - Place holder for calling Sun

%% Decl - Place holder for calling Sun

%% dotsunr - Dot product of the RSun and R

%% rho - Density of the atmosphere

%% VRel - Relative velocity vector of satellite

%%

%% Globals :

%% MU - Mu of the Earth

%% OmegaEarth - Earth’s rotational rate

%% a - Length of boom from COM to main satellite bus (m)

%% b - Length of boom from COM to tip-mass (m)

%% mone - Mass of tip-mass (kg)

%% mtwo - Mass of main satellite bus (kg)

%% mthree - Mass of balloon (kg)

%% lonenot - Taut length of top tether (m)

%% ltwonot - Taut length of bottom tether (m)

%% E - Modulus of Elasticity of both tethers (N)

%%

%% Coupling :

C-2



%% Data - Provides constants

%% Deriv - Calculates Ydot without tension forces

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Declare global variables %%

global MU OmegaEarth a b mone mtwo mthree lonenot ltwonot

%% calculate radius to com

r=mag(X(1:3));

%%calculate angular rate of orbit (rad/sec)

w=sqrt(MU/mag(X(1:3))^3);

%% initialize accelerations %%

ax=0; ay=0; atheta=0;

Tether1springx = 0;

Tether1damperx = 0;

Tether1springy = 0;

Tether1dampery = 0;

Tether1springtheta = 0;

Tether1dampertheta = 0;

Tether2springx = 0;

Tether2damperx = 0;

Tether2springy = 0;

Tether2dampery = 0;

Tether2springtheta = 0;

Tether2dampertheta = 0;

%% Call the function Deriv to calculate EOM with tethers slack %%
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[YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag] = Deriv (Y, X,

Rot);

%% Calculate acceleration with taut l-one %%

if Derivtype(3)==’y’,

Tether1springx = Eone*(1/lonenot - 1/lamone)*(b*sin(Y(3))-Y(1));

Tether1damperx = -cone*(Y(4)-w*Y(2)-b*Y(6)*cos(Y(3))+w*b*cos(Y(3)));

Tether1springy = Eone*(1/lonenot - 1/lamone)*(b*cos(Y(3))-Y(2));

Tether1dampery = -cone*(Y(5)+w*Y(1)+b*Y(6)*sin(Y(3))-w*b*sin(Y(3)));

Tether1springtheta = - Eone*(1/lonenot - 1/lamone)*((b*sin(Y(3))...

-Y(1))*b*cos(Y(3)) - (b*cos(Y(3))-Y(2))*b*sin(Y(3)));

Tether1dampertheta = cone*(b*cos(Y(3))*(Y(4)-w*Y(2)-b*Y(6)...

*cos(Y(3))+w*b*cos(Y(3))) - b*sin(Y(3))*(Y(5)+w*Y(1)+b*Y(6)...

*sin(Y(3))-w*b*sin(Y(3))));

ax=ax + Tether1springx + Tether1damperx;

ay=ay + Tether1springy + Tether1dampery;

atheta=atheta + Tether1springtheta + Tether1dampertheta;

end

%% Calculate acceleration with taut l-two %%

if Derivtype(4)==’y’,

Tether2springx = Etwo*(1/ltwonot - 1/lamtwo)*(-a*sin(Y(3))-Y(1));

Tether2damperx = -ctwo*(Y(4)-w*Y(2)+a*Y(6)*cos(Y(3))-w*a*cos(Y(3)));

Tether2springy = Etwo*(1/ltwonot - 1/lamtwo)*(-a*cos(Y(3))-Y(2));

Tether2dampery = -ctwo*(Y(5)+w*Y(1)-a*Y(6)*sin(Y(3))+w*a*sin(Y(3)));

Tether2springtheta = - Etwo*(1/ltwonot - 1/lamtwo)*((-a*sin(Y(3))...

-Y(1))*-a*cos(Y(3)) + (-a*cos(Y(3))-Y(2))*a*sin(Y(3)));

Tether2dampertheta = ctwo*(-a*cos(Y(3))*(Y(4)-w*Y(2)+a*Y(6)...

*cos(Y(3))-w*a*cos(Y(3))) - b*sin(Y(3))*(Y(5)+w*Y(1)-a*Y(6)...
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*sin(Y(3))+w*a*sin(Y(3))));

ax=ax + Tether2springx + Tether2damperx;

ay=ay + Tether2springy + Tether2dampery;

atheta=atheta + Tether2springtheta + Tether2dampertheta;

end

% Define Acceleration Terms of YDot %%

YDot(4:6) = [YDot(4) + ax/mthree; ...

YDot(5) + ay/mthree; ...

YDot(6) + atheta/(mone*b^2 + mtwo*a^2)];
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Appendix D. Deriv.m

function [YDot,ax2body,ay2body,at2body,axdrag,aydrag,atdrag] =

Deriv (Y, X, Rot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function DERIV

%%

%% This function calculates the derivative of the state vector for

%% use with the Runge-Kutta algorithm.

%%

%% Author : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 27 Oct 2004

%%

%% Algorithm: 1. Call global variables

%% 2. Call Drag program to calculate the forces of drag and

%% direction of drag

%% 3. Calculate accelerations due to drag and gravity

%% 4. Sum accelerations to get YDot

%%

%% Inputs :

%% X - State Vector for R and V km, km/sec

%% Y - State Vector for generalized coordinates

%% Rot - Rotation matrix

%%

%% Outputs :

%% YDot - Derivative of State Vector

%%

%% Locals :

%% Rrel - Position vector of mass three

%% r - Distance from center of Earth to satellite center of mass

%% w - Orbital spin rate
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%% Vrel - Relative velocity

%% rho - Density

%% Fdrag - Drag force on balloon

%%

%%

%% Constants :

%% MU - Global constant

%% OmegaEarth - Spin rate of Earth

%% a - Length from center of mass to main satellite (mass two)

%% b - Length from center of mass to tip mass (mass one)

%% mone - Tip mass

%% mtwo - Main satellite mass

%% bcthree - Ballistic coefficient of tethered balloon

%% w - Angular rate of the satellite’s com

%%

%% Coupling :

%% Atmos - Gets density of atmosphere

%% cross - Calculates cross product

%% mag - Calculates magnitude of a vector

%%

%% References :

%% None.

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Global Constants

global MU OmegaEarth a b mone mtwo bcthree w r

%%%%%%%%%%%%%%%%% Calculate the drag terms %%%%%%%%%%%%%%%%%%%%

[adrag1, Vhat1, adrag2, Vhat2, adrag3, Vhat3] = Drag (Y, X, Rot);

% adrag1=0;

% adrag2=0;
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% adrag3=0;

%% calculate radius to com

rcom=mag(X(1:3));

%%calculate angular rate of orbit (rad/sec)

w=sqrt(MU/mag(X(1:3))^3);

ax2body = 2*w*Y(5) + 3*Y(2)*Y(1)/(rcom*1000)*w^2; ay2body =

-2*w*Y(4) + 3*Y(2)*w^2 + 9/2*Y(2)^2/(rcom*1000)*w^2 +

3/2*Y(1)^2/(rcom*1000)*w^2; at2body =

(-mone*(3*w^2*b^2*cos(Y(3))*sin(Y(3))+3/2*w^2*b^3*sin(Y(3))/(rcom*1000))

-

mtwo*(3*w^2*a^2*cos(Y(3))*sin(Y(3))-3/2*w^2*a^3*sin(Y(3))/(rcom*1000)))...

/(mone*b^2 + mtwo*a^2); axdrag = adrag3*Vhat3(1); aydrag =

adrag3*Vhat3(2); atdrag = (-mone*(adrag1*Vhat1(1)*b*cos(Y(3)) -

adrag1*Vhat1(2)*b*sin(Y(3))) - mtwo*(adrag2*Vhat2(1)*-a*cos(Y(3))

+ adrag2*Vhat2(2)*a*sin(Y(3))))/(mone*b^2 + mtwo*a^2);

%%%%%%%%%%%%%%%%%%%% Velocity Terms in m/s in body frame %%%%%%%%%%%%%%%

YDot=[Y(4); ...

Y(5); ...

Y(6); ...

%%%%%%%%%%%%%%%%%% Acceleration Terms in m/s^2 in body frame %%%%%%%

% 2*w*Y(5) + adrag*Vhat(1); ...

% -2*w*Y(4) + 3*Y(2)*w^2 + adrag*Vhat(2); ...

% (-mone*(3*w^2*b^2*cos(Y(3))*sin(Y(3))+3/2*w^2*b^3*sin(Y(3))/...

(rcom*1000)) - mtwo*(3*w^2*a^2*cos(Y(3))*sin(Y(3))-3/2*w^2*a^3...

*sin(Y(3))/(rcom*1000)))/(mone*b^2 + mtwo*a^2)];

% The following contains the equations of motion with greater order

% of accuracy:
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ax2body + axdrag; ...

ay2body + aydrag; ...

at2body + atdrag];
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Appendix E. Drag.m

function [adrag1, Vhat1, adrag2, Vhat2, adrag3, Vhat3] = Drag (Y, X, Rot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function Drag

%%

%% This function calculates drag for each mass.

%%

%% Author : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 27 Oct 2004

%%

%% Algorithm: 1. Call global variables

%% 2. Calculate r and w for COM

%% 3. For m1: calculate r and v in km and km/s and in inertial frame

%% calculate atmospheric density

%% calculate magnitude of air drag deceleration in m/s^2

%% calculate unit vector for direction of drag term

%% 4. Repeat step 3 for m2 and m3

%%

%% Inputs :

%% X - State Vector for R and V km, km/sec

%% Y - State Vector for generalized coordinates

%% Rot - Rotation matrix

%%

%% Outputs :

%% YDot - Derivative of State Vector

%%

%% Locals :

%% Rrel - Position vector of mass three

%% r - Distance from center of Earth to satellite center of mass

%% w - Orbital spin rate
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%% Vrel - Relative velocity

%% rho - Density

%% Fdrag - Drag force on balloon

%%

%%

%% Constants :

%% MU - Global constant

%% OmegaEarth - Spin rate of Earth

%% a - Length from center of mass to main satellite (mass two)

%% b - Length from center of mass to tip mass (mass one)

%% mone - Tip mass

%% mtwo - Main satellite mass

%% bcthree - Ballistic coefficient of tethered balloon

%% w - Angular rate of the satellite’s com

%%

%% Coupling :

%% Atmos - Gets density of atmosphere

%% cross - Calculates cross product

%% mag - Calculates magnitude of a vector

%%

%% References :

%% None.

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Global Constants

global MU OmegaEarth a b mone mtwo bcone bctwo bcthree

%% calculate radius to com

r=mag(X(1:3));

%%calculate angular rate of orbit (rad/sec)

w=sqrt(MU/mag(X(1:3))^3);
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%%%%%%%%%%%%%%%%% Calculate the drag term for m1 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to

% rotated delx and dely

Tempr=[b*sin(Y(3)); b*cos(Y(3)); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];

% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[b*cos(Y(3))*(Y(6)-w); -b*sin(Y(3))*Y(6) + w*b*sin(Y(3));

0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);

% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag1=-0.5*rho*((mag(Vrel)*1000)^2)/(bcone);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat1=Rot*Vtemp;

%%%%%%%%%%%%%%%%% Calculate the drag term for m2 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to rotated

% delx and dely

Tempr=[-a*sin(Y(3)); -a*cos(Y(3)); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];
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% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[-a*cos(Y(3))*(Y(6)-w); a*sin(Y(3))*Y(6) - w*a*sin(Y(3));

0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);

% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag2=-0.5*rho*((mag(Vrel)*1000)^2)/(bctwo);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat2=Rot*Vtemp;

%%%%%%%%%%%%%%%%% Calculate the drag term for m3 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to rotated

% delx and dely

Tempr=[Y(1); Y(2); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];

% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[Y(4) - w*Y(2); Y(5) + w*Y(1); 0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);
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% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag3=-0.5*rho*((mag(Vrel)*1000)^2)/(bcthree);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat3=Rot*Vtemp;
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Appendix F. Atmos.m

function [adrag1, Vhat1, adrag2, Vhat2, adrag3, Vhat3] = Drag (Y,X, Rot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function Drag

%%

%% This function calculates drag for each mass.

%%

%% Author : 2Lt Ernest Maramba AFIT/ENY 937-369-6956 27 Oct 2004

%%

%% Algorithm: 1. Call global variables

%% 2. Calculate r and w for COM

%% 3. For m1: calculate r and v in km and km/s and in inertial frame

%% calculate atmospheric density

%% calculate magnitude of air drag deceleration in m/s^2

%% calculate unit vector for direction of drag term

%% 4. Repeat step 3 for m2 and m3

%%

%% Inputs :

%% X - State Vector for R and V km, km/sec

%% Y - State Vector for generalized coordinates

%% Rot - Rotation matrix

%%

%% Outputs :

%% YDot - Derivative of State Vector

%%

%% Locals :

%% Rrel - Position vector of mass three

%% r - Distance from center of Earth to satellite center of mass

%% w - Orbital spin rate
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%% Vrel - Relative velocity

%% rho - Density

%% Fdrag - Drag force on balloon

%%

%%

%% Constants :

%% MU - Global constant

%% OmegaEarth - Spin rate of Earth

%% a - Length from center of mass to main satellite (mass two)

%% b - Length from center of mass to tip mass (mass one)

%% mone - Tip mass

%% mtwo - Main satellite mass

%% bcthree - Ballistic coefficient of tethered balloon

%% w - Angular rate of the satellite’s com

%%

%% Coupling :

%% Atmos - Gets density of atmosphere

%% cross - Calculates cross product

%% mag - Calculates magnitude of a vector

%%

%% References :

%% None.

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Global Constants

global MU OmegaEarth a b mone mtwo bcone bctwo bcthree

%% calculate radius to com

r=mag(X(1:3));

%%calculate angular rate of orbit (rad/sec)

w=sqrt(MU/mag(X(1:3))^3);
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%%%%%%%%%%%%%%%%% Calculate the drag term for m1 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to

% rotated delx and dely

Tempr=[b*sin(Y(3)); b*cos(Y(3)); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];

% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[b*cos(Y(3))*(Y(6)-w); -b*sin(Y(3))*Y(6) + w*b*sin(Y(3));

0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);

% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag1=-0.5*rho*((mag(Vrel)*1000)^2)/(bcone);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat1=Rot*Vtemp;

%%%%%%%%%%%%%%%%% Calculate the drag term for m2 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to

% rotated delx and dely

Tempr=[-a*sin(Y(3)); -a*cos(Y(3)); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];
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% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[-a*cos(Y(3))*(Y(6)-w); a*sin(Y(3))*Y(6) - w*a*sin(Y(3));

0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);

% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag2=-0.5*rho*((mag(Vrel)*1000)^2)/(bctwo);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat2=Rot*Vtemp;

%%%%%%%%%%%%%%%%% Calculate the drag term for m3 %%%%%%%%%%%%%%%%%%%%

% Calculate r in km and in inertial frame by adding R of COM to

% rotated delx and dely

Tempr=[Y(1); Y(2); 0]; Tempr = Rot*Tempr/1000;

Rrel=[X(1)+Tempr(1);X(2)+Tempr(2);X(3)+Tempr(3)];

% Calculate v in km/s and in inertial frame by adding V of COM to

% rotated delxdot and delydot

Tempv=[Y(4) - w*Y(2); Y(5) + w*Y(1); 0]; Tempv = Rot*Tempv/1000;

Vrel=[X(4)+Tempv(1);X(5)+Tempv(2);X(6)+Tempv(3)]...

-cross([0;0;OmegaEarth],Rrel);
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% Calculate atmospheric density in kg/m^3

[rho] = ATMOS(Rrel)*(10^3);

% Calculate magnitude of air drag deceleration in m/s^2

adrag3=-0.5*rho*((mag(Vrel)*1000)^2)/(bcthree);

% Calculate unit vector for direction of drag term

% - Rotated into body frame

Vtemp=Vrel/mag(Vrel); Vhat3=Rot*Vtemp;
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Appendix G. RK4forRandV.m

function [X2] = RK4forRandV ( IDate, stepsize, DerivType, X, Y, Rot)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function RK4forRandV

%%

%% This function is a fourth order Runge-Kutta integrator for a

%% 6 dimension First Order differential equation. The intended

%% use is for a satellite equation of motion. The user must provide

%% an external function containing the system Equations of Motion.

%% Notice Julian date is included since some applications in PDERIV

%% may need this. The LAST position in DerivType is a flag for

%% two-body motion. Two-Body motion is used if the 10th element is

%% set to "2", otherwise the Yes and No values determine which

%% perturbations to use.

%% The integration is done for one time step only.

%%

%% Algorithm : Evaluate each term depending on the derivtype

%% Find the final answer

%% Notice the 4th k must be mult by Dt since k1-k3 did so in assignval

%% Also, the 4th k is left as xdot since it was just calculated

%%

%% Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 5 Jun 1991

%% In Ada : Dr Ron Lisowski USAFA/DFAS 719-472-4110 12 Jan 1996

%% In MatLab : Dr Ron Lisowski USAFA/DFAS 719-333-4109 16 Jan 2002

%%

%% Inputs :

%% IDate - Initial Time Julian Date days since 4713 B.C.

%% Dt - Step size sec
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%% DerivType - String containing YN for incl perts "YYNYNYNY2"

%% BC - Ballistic Coefficient kg/m2

%% X - State vector at initial time km, km/sec

%%

%% Outputs :

%% X - State vector at new time km, km/sec

%%

%% Locals :

%% XDot - Derivative of State Vector

%% K1,K2,K3 - Storage for values of state vector at different times

%% (The standard Runge-Kutta K constants)

%% TEMP - Storage for state vector

%% TempDate - Temporary date storage half way between dt days since

%% 4713 B.C.

%%

%% Constants :

%% None.

%%

%% Coupling :

%% Deriv function for Derivatives of E.O.M.

%% PDeriv function for Derivatives of E.O.M. with Perturbations

%%

%% References :

%% Mathews, "Numerical Methods" pg. 423-427

%% BMW pg. 414-415

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global BC

%% Local VARIABLES

%%%%%%%%%%%%%%%% Evaluate 1st Taylor Series Term %%%%%%%%%%%%%%
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if DerivType(10:10) == ’2’ ,

[XDot] = DerivforRandV( X );

else

[XDot] = PDerivforRandV( IDate,X,DerivType,BC, Y, Rot );

end

%%%%%%%%%%%%%%%% Update Julian Date for a half Dt %%%%%%%%%%%%%

TempDate = IDate + stepsize * 0.5 / 86400.0;

%%%%%%%%%%%%%%%% Evaluate 2nd Taylor Series Term %%%%%%%%%%%%%%

K1 = stepsize * XDot;

Temp = X + 0.5 * K1;

if DerivType(10:10) == ’2’ ,

[XDot] = DerivforRandV( Temp );

else

[XDot] = PDerivforRandV( IDate,Temp,DerivType,BC, Y, Rot );

end

%%%%%%%%%%%%%%%% Evaluate 3rd Taylor Series Term %%%%%%%%%%%%%%

K2 = stepsize * XDot;

Temp = X + 0.5 * K2;

if DerivType(10:10) == ’2’ ,

[XDot] = DerivforRandV( Temp );

else

[XDot] = PDerivforRandV( IDate,Temp,DerivType,BC, Y, Rot );

end

%%%%%%%%%%%%%%%% Evaluate 4th Taylor Series Term %%%%%%%%%%%%%%%%

K3 = stepsize * XDot;
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Temp = X + K3;

%%%%%%%%%%%%%%%% Update Julian Date for a full Dt %%%%%%%%%%%%%%-

TempDate = IDate + stepsize / 86400.0;

if DerivType(10:10) == ’2’ ,

[XDot] = DerivforRandV( Temp );

else

[XDot] = PDerivforRandV( IDate,Temp,DerivType,BC, Y, Rot );

end

%%%%%%%%%%- Update the State vector, perform integration %%%%%%-

X2 = X + ( K1 + 2.0 * ( K2 + K3 ) + stepsize * XDot) / 6.0;
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Appendix H. DerivforRandV.m

function [XDot] = DerivforRandV ( X )

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%

%% function DERIV

%%

%% This function calculates the derivative of the two-body state vector

%% for use with the Runge-Kutta algorithm. Note time is not needed.

%%

%% Algorithm : Find the answer

%%

%% Author : Capt Dave Vallado USAFA/DFAS 719-472-4109 28 Aug 1989

%% In Ada : Dr Ron Lisowski USAFA/DFAS 719-472-4110 5 Jan 1996

%% In MatLab : Dr Ron Lisowski USAFA/DFAS 719-333-4109 14 Nov 2001

%%

%% Inputs :

%% X - State Vector km, km/sec

%%

%% Outputs :

%% XDot - Derivative of State Vector km/sec, km/se2

%%

%% Locals :

%% RCubed - Cube of R

%% MU_R3 - Mu / R cubed

%%

%% Constants :

%% None.

%%

%% Coupling :

%% None.
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%%

%% References :

%% None.

%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Global Constants

global MU

%%%%%%%%%%%%%%%%% Build the XDot Vector %%%%%%%%%%%%%%%%%%%%

R= sqrt(X(1)^2+X(2)^2+X(3)^2);

RCubed= R*R*R;

MU_R3 = -MU/RCubed;

%%%%%%%%%%%%%%%%%%%% Velocity Terms %%%%%%%%%%%%%%%%%%%%%%

XDot = [X(4); ...

X(5); ...

X(6); ...

%%%%%%%%%%%%%%%%%% Acceleration Terms %%%%%%%%%%%%%%%%%%%%

X(1) * MU_R3; ...

X(2) * MU_R3; ...

X(3) * MU_R3];
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